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My Conclusions

m The blessings and curses of economic growth

m Carbon tax can resolve the “tragedy of the commons”

m guide technological innovations
m consumer and producer signalling
B ... maybe also some peace of mind?

m Climate resilience dependence on manageability (and by
extension on wealth?)

m Econometrics has a role in climate change modelling, especially
on the economic side

Question: Imagine NL with carbon tax, you are prime minister,
what will you do with the revenues?
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Climate Change has a huge spatial component

m Climate change always slips through border security

m GHGs diffuse freely through space
m Climate impacts are heterogeneous over space

m As a consequence, climate policy is spatial problem

m Free-riding and/or climate regulation evasion are a valid concern
m Should climate compensations vary over space (and over
income)?

m Let us consider a “Dutch” example of climate spatial data

¥

ERASMUS SCHOOL OF ECONOMICS 3/44



“De Stikstofcrisis”

Satellite image of NO, concentration in NL (source: Tropospheric

Emission Monitoring Internet Service)

TROPOMI trop. NO, Sep. 2020 KNMI/ESA

NO, tropospheric column [10" molec./em?]
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Question: What is the crisis about? Implications? Policy?
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Arriving in Rotterdam, your Courses at
Erasmus University...

’ Course Typical Data Property
Statistics ii.d.
Intro to Multivariate Statistics ii.d.
Markov Processes time series
Econometrics 1 cross-sectional regression
heteroskedasticity,
Econometrics 2 serial correlation, endogeneity,
limited dependence
Time Series Analysis time series

=> Today: Learn how to model spatial data <=
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Overview of the Lectures

General considerations on modelling/forecasting climate data

Three example cases:

m Case 1: The Tip of the Iceberg
m Case 2: Climate Change and Agriculture
m Case 3: Uncomfortable Temperatures

Some general conclusions
Spatial econometrics: the Spatial Autoregressive (SAR) Model

Assignment
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Specific Overview for this Lecture

Spatial econometrics: the Spatial Autoregressive (SAR) Model

B Modeling Spatial Data
A The spatial weight matrix
Estimation

El On normalization

Assignment
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Modeling Spatial
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The Spatial Autoregressive (SAR) Model

The SAR model is
Yn = MWy, + XpB + €n, (1)

where €, = (e1,...,2,) € R" is a random vector of innovations
with E(¢;) = 0 and Var(g;) = o2

=> By convention, [W,];=0foralli=1,...,n <=

Some questions:
m What is the interpretation of model (1)?

m How to estimate the unknown parameters \, 3, and 0?7
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SAR = Linear Regression Model 4+ Spatial lag

m Let me (temporarily) delete a term: y, = XWsyr + X.8 + €,

m Your econometric Pavlov reaction might be:
E8 This is boring... it's just a multivariate linear regression

B Yes, OLS! | love B = (X'X)"1X'y

m The new feature is the so-called spatial lag W, y,

m W, € R™" is the spatial weight matrix

m Spatial autoregressive parameter A

m Given W, and the observations y,, W,y, is similar to any other
regressor? Or maybe not?
After today, you can invent your own spatial model because:

’known model + spatial lag = unknown new spatial model
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“De Stikstofcrisis” (revisited)

./

—f
o

Yo = A\Wayn + Xo8 + &5

m W,y,: captures diffusion effects

m X,: temperature, traffic intensity, agricultural index, etc.
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Some Economic Examples

Cigarette demand in the US
Modeling house prices

Crime analysis

SAR model is closely related to social interaction models (see
slide 18)

Reasons to include a spatial lag are:
There are spatial spillover effects

“Borrowing” omitted variables from neighboring locations
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Specific Overview for this Lecture

Spatial econometrics: the Spatial Autoregressive (SAR)
Model

B Modeling Spatial Data

A The spatial weight matrix
Estimation

El On normalization

Assignment
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The Spatial Weight Matrix

e ‘4
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Specifications of the Spatial Weight Matrix

m The choice of W, is crucial because it determines how
neighboring information is incorporated

m Two main approached to specify W,:
m Contiguity
m Distance-based

m In practice, try several W, and compare findings and fit
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Continguity (1)

Contiguity: “the state of bordering or being in contact with
something”

m Binary contiguity

1 if i and j are contiguous
[Wn]ij = P, . . .
0 if i and j are not contiguous (and i = j)

m We still need to give a geographic meaning to “contiguous”
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Continguity (2)

m Sharing a common border

0110

1 011

S~ L R

0110

m Rook contiguity for lattice
r010100000
090001000
s B w, = |3089824%8
TTels T [saased
19 000010101
000001010
Question (for chess players): What are bishop and queen

contiguity?
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Continguity (3)

Question: What does the following W, reflect?

(0 1 1 0 0 0 0 0 O]

101000000
11 00000O0°0O
000011100
000101100
000110100
000111000
000O0O0OOTOT 0?1
000O0O0OOODOT1OQO

w, =
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Weight Matrices based on Distances

m Let djj denote the distance between spatial units i and j

m Geophysical distance based on, say longitude+latitude
m Distance between centroids of regions
m “Economic” distance based on economic similarity

m Examples:
= Inverse distance: [W,]; = 1/dg (typically: « =1 or a = 2)
m Exponential decay: [W,]; = exp(—dj;/c)
m Threshold distance: [W;]; = 14, <4}

=> Do not forget: [W,]|;=0foralli=1,...,n <=
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Specific Overview for this Lecture

Spatial econometrics: the Spatial Autoregressive (SAR)
Model

B Modeling Spatial Data

A The spatial weight matrix
Estimation

El On normalization

Assignment
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Estimating the SAR Parameters

JS =Z
+ — =X
% JT 2.
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Estimation by OLS? Yes or no?

Recall the SAR model: y, = AW,.y, + X,3 + ¢,

Define X = [W,y, X, and 8* = {[)\3}

In the new notation, y, = X}3* + ¢,

Question: Can we estimate the unknown parameters by OLS, i.e.

[g] = B = (X)X yn?
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Maximum Likelihood of the SAR Model (1)

Yn = )\Wnyn + Xn,B + &,

m Many results originate from the seminal paper is Lee (2004):

m >1000 citations
® Quasi-maximum likelihood assuming &, ~ N(0, o21,)
m Detailed analysis of the asymptotic properties of the QMLE

m We will explore a subset of Lee's (2004) results
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Deriving the Log-likelihood (Assignment 1)

1. Define S,(\) = I, — A\W,, and assume that S,1()\) exists. Prove that the log-
likelihood under €, ~ N(0, 0%I,,) is equal to

log L,(6) = —%log(2m) — %log(c?) + log (det(Sa(})))
= 25 (S: W — Xu8) (SuWNwn — Xu8),
where 0 = (\, 3, 02)".

Steps:
Solve for y,
Use €, ~ N(0, 0%1,) to determine distribution of y,
The distribution provides the log-likelihood
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A Closer Look at the Log-Likelihood (1)

log L,(0) = — 2 log(2m) — 2 log(0?) + log (det(Sx())))
— 22 (5,0 — XaB) (Sa(Nya — X

Question: How would you maximize this log-likelihood?

ERASMUS SCHOOL OF ECONOMICS 25/44



A Closer Look at the Log-Likelihood (2)

log Ln(0) = — 2 log(27) — 2 log(c?) + log (det(Sn())))
— 22 (5,009 = XaB) (Sa(Nyn — X8

Observations:
m log L,(0) is quadratic in 3

2

m The dependence on o° mimics the “traditional” Gaussian MLE

m The spatial autoregressive parameter enters nonlinearly

=> Concentrate the log-likelihood w.r.t. both 3 and ¢? <=
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Vector Differentiation (recap)

Let 8= (P1,...,8«) € RF and f : Rk = R, then

8526)
orB) _ | M| e
9B of(B)

0Pk

m A vector derivative is often called the gradient
m The notation V£(3) is also used
m Proofs work “element-wise” (examples on next slide)
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Some Vector Derivatives (recap)?

m For x € R¥, —Bﬁ x = x|, because
) ] 86, a
Bixi = = Oiexi = xp = [x
B eaﬁz z > = e = b,
m For A € Rk 88[3 'AB = (A+ A')3| because
0 0 i , 0B
[ﬁ } 787226' ibj = ZZ( & U‘ﬂjJrﬁiAija?)
i=1 j=1 i=1 j=1 £
Kk K K
Z Z 0icAiiB; + BiAijdje) = Z AgiBi + Z AieBi
-1 j-1 =1 i—1
= [(A + A8,

"Note: The Kronecker delta &; equals 1 if i = j, and 0 if j # j.
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Concentrating the Log-likelihood w.r.t. 3

Using the results from the previous slide, we find

8% log Ln(0) = _zi%?aﬂ (S,,()\)yn - Xn/a),(sn()‘)yn - Xnﬁ)
— _2;28% (5’x;xn5 — 2B’X;Sn(A)yn>

= (XX~ X;5,(\)

Given ), the optimal choice for 3 is

B = (X1 Xa) " X S,(A\)y
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Concentrating the Log-likelihood w.r.t. o2

(Assignment 2)

2. Concentrate the log-likelihood with respect to o2 and show that

5(3) = ~uSH()Mx S, (Vyr,

n

where Mx = I, — X,(X, X,,) "1 X].

Steps:
Set % log Ln(0) equal to zero
Insert the expression for B()\)
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It’s all about the A... (Assignment 3)

m We have optimal choices for 3 and o2 given the value for X

m |t remains to compute the concentrated log-likelihood

3. Derive the concentrated log-likelihood

log Ln()) = —%(log(Qﬂ') + 1) — 2log (6%())) + log (det(Sa()))-

ERASMUS SCHOOL OF ECONOMICS 31/44



The Estimation Approach (1)

A list of all the results so far:
m log Ln(\) = —2 ( Iog(27r)—|—1) — 2 log (62())) +log ( det(S4(1)))
= B(A) = (X1X:) " X Su(\)yn
= 52(A) = LyhSH(A)Mx Sp(A)yn

Question 1: How to interpret the formulae for B()\) and 52())?

Question 2: Given this interpretation, what is an intuitive
implementation?
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The Estimation Approach (2)

Maximize the concentrated log-likelihood
log Ln(A) = —2 ( log(27)+ 1) — 2 log (52(\)) +log (det(S,(\))

to determine the MLE \

m “Easy” univariate optimization problem (grid search,
Newton-Rhapson, etc.) due to likelihood concentration

Consider y, — XW,,y,, =X,8+e¢€,
m Newly computed dependent variable y, — XW,,y,,
m OLS estimator equal B(\)
m Average SSR is 82(:\\)
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Specific Overview for this Lecture

Spatial econometrics: the Spatial Autoregressive (SAR)
Model

B Modeling Spatial Data

A The spatial weight matrix
Estimation

El On normalization

Assignment
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!g‘

On normalization

G

W
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Which \-values?

m Two remaining (and related) issues

— AW, = (2) (CW,) for any constant C
— We assumed S,(A\) = I, — AW, to be invertible

m These issues are important because they determine the
parameter space over which to optimize the concentrated
log-likelihood

m Normalize the spatial weight matrix W,,. Two normalization
schemes are popular:

Spectral-normalization
Row-normalization

¥
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Focusing on Symmetric Weight Matrices

m For simplicity, assume W, = W/ (restrictive in
theory/practice?)

m Recall eigenvalue decomposition W, = V,A,V,
m V, € R"*" stacks eigenvectors in columns
m A, =diag(k1(W,), ..., kn(W,)) € R™" where
— ri(W,) denotes the i*" eigenvalue of W,
— ki(W,) is a real
— ffl(Wn) > KZ(Wn) > 2> /Qn(Wn)
m V'V, =V,V =1,

m The key insight is

So(A) = I — AW, = V, V! — AV, A,V = V, (I, — AA,) V!

=> S,(\) has eigenvalues 1 — \x;(W,) (i=1,...,n) <=
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Spectral-normalization

m S,()) is invertible if all its eigenvalues are unequal to zero
1—Aki(W,) #0 foralli=1,...,n. (2)

m For spectral-normalization, condition (2) is satisfied using
Renormalize W, to W} = W,/ maxi=1,..., |ki(W,)]
Ensure that the maximum eigenvalue of W is equal to one?
Optimize concentrated log-likelihood over A < 1, then

Mg (W) <1 = S, () invertible

2This is either trivially satisfied or requires multiplying W;* by -1
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Row-normalization

m W, often has non-negative elements

m For row-normalization, condition (2) is satisfied using
Renormalize W, using [W,]; = [W,];/ 2=/, [Wa]j. In words:
all row-sums of W,* are made equal to one
Optimize concentrated log-likelihood over A < 1, then

Ma (W) <1 = S,(X) invertible

m This works because W is now a row-stochastic matrix
— W, has an eigenvalue equal to 1 (why?)
— No eigenvalues of W, can exceed 1 because all elements of
W x are convex combinations of xi, ..., X,
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The Estimation Approach (3)

Select W,, and normalize

Maximize the concentrated log-likelihood
log Ln(A) = —3 ( log(2m)+1) 4 log (6°(1)) +log (det(Sa(1))

to determine the MLE \

m “Easy” univariate optimization problem (grid search,
Newton-Rhapson, etc.) due to likelihood concentration
m Normalization provides admissible values for A

Consider y, — XW,,y,, = X8+ ¢,
m Newly computed depeAndAent variable y, — XW,,y,,
m OLS estimator equal B(\)
m Average SSR is Gz(X)
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Extra 1: Asymptotic Results in Lee (2004)

m The objective function is nonlinear = no finite sample results

m Lee (2004) provides explicit conditions guaranteeing
consistency of the MLE

m Normally distributed errors are not needed... assuming
€, ~ N(0,021,) is just a convenient way of finding an estimator
(compare OLS)

m Asymptotic normality also holds (albeit under more restrictive
conditions) and allows for inference

ﬁ ERASMUS SCHOOL OF ECONOMICS 41/44

=



Extra 2: Other Estimation Approaches

m |V estimation in Kelejian and Prucha (1998)
m Lin and Lee (2010) investigate GMM

Remarks:
m |V and GMM allow for heteroskedasticity
m Instruments are readily available (why?)
m ML is most efficient (“smallest” asymptotic covariance matrix)
under homoskedasticity
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Specific Overview for this Lecture

Spatial econometrics: the Spatial Autoregressive (SAR)
Model

B Modeling Spatial Data

A The spatial weight matrix
Estimation

El On normalization

Assignment — You have seen the three exercises!
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