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My Conclusions

The blessings and curses of economic growth

Carbon tax can resolve the “tragedy of the commons”
guide technological innovations
consumer and producer signalling
... maybe also some peace of mind?

Climate resilience dependence on manageability (and by
extension on wealth?)

Econometrics has a role in climate change modelling, especially
on the economic side

Question: Imagine NL with carbon tax, you are prime minister,
what will you do with the revenues?
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Climate Change has a huge spatial component

Climate change always slips through border security
GHGs diffuse freely through space
Climate impacts are heterogeneous over space

As a consequence, climate policy is spatial problem
Free-riding and/or climate regulation evasion are a valid concern
Should climate compensations vary over space (and over
income)?

Let us consider a “Dutch” example of climate spatial data
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“De Stikstofcrisis”

Satellite image of NO2 concentration in NL (source: Tropospheric
Emission Monitoring Internet Service)

Question: What is the crisis about? Implications? Policy?
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Arriving in Rotterdam, your Courses at
Erasmus University...

Course Typical Data Property

Statistics i.i.d.
Intro to Multivariate Statistics i.i.d.

Markov Processes time series
Econometrics 1 cross-sectional regression

Econometrics 2
heteroskedasticity,

serial correlation, endogeneity,
limited dependence

Time Series Analysis time series

=> Today : Learn how to model spatial data <=
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Overview of the Lectures

1 General considerations on modelling/forecasting climate data

2 Three example cases:
Case 1: The Tip of the Iceberg
Case 2: Climate Change and Agriculture
Case 3: Uncomfortable Temperatures

3 Some general conclusions

4 Spatial econometrics: the Spatial Autoregressive (SAR) Model

5 Assignment
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Specific Overview for this Lecture

4 Spatial econometrics: the Spatial Autoregressive (SAR) Model
a Modeling Spatial Data
b The spatial weight matrix
c Estimation
d On normalization

5 Assignment
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Modeling Spatial Data
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The Spatial Autoregressive (SAR) Model

The SAR model is

yn = λWnyn + Xnβ + εn, (1)

where εn = (ε1, . . . , εn)
′ ∈ Rn is a random vector of innovations

with E(εi ) = 0 and V ar(εi ) = σ2.

=> By convention, [Wn]ii = 0 for all i = 1, . . . , n <=

Some questions:
What is the interpretation of model (1)?
How to estimate the unknown parameters λ, β, and σ2?
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SAR = Linear Regression Model + Spatial lag

Let me (temporarily) delete a term: yn = λWnyn + Xnβ + εn

Your econometric Pavlov reaction might be:
1 This is boring... it’s just a multivariate linear regression
2 Yes, OLS! I love β̂ = (X ′X )−1X ′y

The new feature is the so-called spatial lag Wnyn
Wn ∈ Rn×n is the spatial weight matrix
Spatial autoregressive parameter λ
Given Wn and the observations yn, Wnyn is similar to any other
regressor? Or maybe not?
After today, you can invent your own spatial model because:

known model+ spatial lag =⇒ unknown new spatial model
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“De Stikstofcrisis” (revisited)

yn = λWnyn + Xnβ + εn

Wnyn: captures diffusion effects
Xn: temperature, traffic intensity, agricultural index, etc.
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Some Economic Examples

Cigarette demand in the US
Modeling house prices
Crime analysis
SAR model is closely related to social interaction models (see
slide 18)

Reasons to include a spatial lag are:
1 There are spatial spillover effects
2 “Borrowing” omitted variables from neighboring locations
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Specific Overview for this Lecture

4 Spatial econometrics: the Spatial Autoregressive (SAR)
Model

a Modeling Spatial Data
b The spatial weight matrix
c Estimation
d On normalization

5 Assignment
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The Spatial Weight Matrix

Wn
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Specifications of the Spatial Weight Matrix

The choice of Wn is crucial because it determines how
neighboring information is incorporated

Two main approached to specify Wn:
Contiguity
Distance-based

In practice, try several Wn and compare findings and fit
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Continguity (1)

Contiguity: “the state of bordering or being in contact with
something ”

Binary contiguity

[Wn]ij =

{
1 if i and j are contiguous
0 if i and j are not contiguous (and i = j)

We still need to give a geographic meaning to “contiguous”
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Continguity (2)

Sharing a common border

Wn =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


Rook contiguity for lattice

Wn =


0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


Question (for chess players): What are bishop and queen
contiguity?
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Continguity (3)

Question: What does the following Wn reflect?

Wn =



0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 1 0 1 1 0 0
0 0 0 1 1 0 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0


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Weight Matrices based on Distances

Let dij denote the distance between spatial units i and j

Geophysical distance based on, say longitude+latitude
Distance between centroids of regions
“Economic” distance based on economic similarity

Examples:
Inverse distance: [Wn]ij = 1/dαij (typically: α = 1 or α = 2)
Exponential decay: [Wn]ij = exp(−dij/α)
Threshold distance: [Wn]ij = 1{dij≤d∗}

=> Do not forget: [Wn]ii = 0 for all i = 1, . . . , n <=
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Specific Overview for this Lecture

4 Spatial econometrics: the Spatial Autoregressive (SAR)
Model

a Modeling Spatial Data
b The spatial weight matrix
c Estimation
d On normalization

5 Assignment
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Estimating the SAR Parameters
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Estimation by OLS? Yes or no?

Recall the SAR model: yn = λWnyn + Xnβ + εn

1 Define X ∗n =
[
Wnyn Xn

]
and β∗ =

[
λ
β

]
2 In the new notation, yn = X ∗nβ∗ + εn

Question: Can we estimate the unknown parameters by OLS, i.e.[
λ̂

β̂

]
= β̂∗ = (X ∗′n X ∗n )

−1X ∗′n yn?
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Maximum Likelihood of the SAR Model (1)

yn = λWnyn + Xnβ + εn

Many results originate from the seminal paper is Lee (2004):
>1000 citations
Quasi-maximum likelihood assuming εn ∼ N(0, σ2In)
Detailed analysis of the asymptotic properties of the QMLE

We will explore a subset of Lee’s (2004) results
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Deriving the Log-likelihood (Assignment 1)

Steps:
1 Solve for yn
2 Use εn ∼ N(0, σ2In) to determine distribution of yn
3 The distribution provides the log-likelihood
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A Closer Look at the Log-Likelihood (1)

log Ln(θ) = −n
2 log(2π)−

n
2 log(σ

2) + log
(
det(Sn(λ))

)
− 1

2σ2

(
Sn(λ)yn − Xnβ

)′(
Sn(λ)yn − Xnβ

)

Question: How would you maximize this log-likelihood?
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A Closer Look at the Log-Likelihood (2)

log Ln(θ) = −n
2 log(2π)−

n
2 log(σ

2) + log
(
det(Sn(λ))

)
− 1

2σ2

(
Sn(λ)yn − Xnβ

)′(
Sn(λ)yn − Xnβ

)

Observations:
log Ln(θ) is quadratic in β
The dependence on σ2 mimics the “traditional” Gaussian MLE
The spatial autoregressive parameter enters nonlinearly

=> Concentrate the log-likelihood w.r.t. both β and σ2 <=
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Vector Differentiation (recap)

Let β = (β1, . . . , βk)
′ ∈ Rk and f : Rk → R, then

∂f (β)

∂β
=


∂f (β)
∂β1
...

∂f (β)
∂βk

 ∈ Rk

A vector derivative is often called the gradient
The notation ∇f (β) is also used
Proofs work “element-wise” (examples on next slide)
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Some Vector Derivatives (recap)1

For x ∈ Rk ,
∂

∂β
β′x = x , because[

∂

∂β
β′x
]
`

=
∂

∂β`

k∑
i=1

βixi =
k∑

i=1

∂βi
∂β`

xi =
k∑

i=1

δi`xi = x` = [x ]`

For A ∈ Rk×k ,
∂

∂β
β′Aβ = (A + A′)β , because

[
∂

∂β
β′Aβ

]
`

=
∂

∂β`

k∑
i=1

k∑
j=1

βiAijβj =
k∑

i=1

k∑
j=1

(
∂βi
∂β`

Aijβj + βiAij
∂βj
∂β`

)

=
k∑

i=1

k∑
j=1

(δi`Aijβj + βiAijδj`) =
k∑

j=1

A`jβj +
k∑

i=1

Ai`βi

= [(A + A′)β]`
1Note: The Kronecker delta δij equals 1 if i = j , and 0 if i 6= j .
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Concentrating the Log-likelihood w.r.t. β

Using the results from the previous slide, we find

∂

∂β
log Ln(θ) = −

1
2σ2

∂

∂β

(
Sn(λ)yn − Xnβ

)′(
Sn(λ)yn − Xnβ

)
= − 1

2σ2
∂

∂β

(
β′X ′nXnβ − 2β′X ′nSn(λ)yn

)
= − 1

σ2

(
X ′nXnβ − X ′nSn(λ)yn

)

Given λ, the optimal choice for β is

β̂(λ) =
(
X ′nXn

)−1X ′nSn(λ)yn
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Concentrating the Log-likelihood w.r.t. σ2

(Assignment 2)

Steps:
1 Set ∂

∂σ2 log Ln(θ) equal to zero

2 Insert the expression for β̂(λ)
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It’s all about the λ... (Assignment 3)

We have optimal choices for β and σ2 given the value for λ

It remains to compute the concentrated log-likelihood

ERASMUS SCHOOL OF ECONOMICS 31/44



The Estimation Approach (1)

A list of all the results so far:
log Ln(λ) = −n

2

(
log(2π)+1

)
− n

2 log
(
σ̂2(λ)

)
+log

(
det(Sn(λ))

)
β̂(λ) =

(
X ′nXn

)−1X ′nSn(λ)yn
σ̂2(λ) = 1

ny
′
nS ′n(λ)MXSn(λ)yn

Question 1: How to interpret the formulae for β̂(λ) and σ̂2(λ)?

Question 2: Given this interpretation, what is an intuitive
implementation?
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The Estimation Approach (2)

1 Maximize the concentrated log-likelihood

log Ln(λ) = −n
2

(
log(2π)+1

)
− n

2 log
(
σ̂2(λ)

)
+log

(
det(Sn(λ))

)
to determine the MLE λ̂

“Easy” univariate optimization problem (grid search,
Newton-Rhapson, etc.) due to likelihood concentration

2 Consider yn − λ̂Wnyn = Xnβ + εn
Newly computed dependent variable yn − λ̂Wnyn
OLS estimator equal β̂(λ̂)
Average SSR is σ̂2(λ̂)
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Specific Overview for this Lecture

4 Spatial econometrics: the Spatial Autoregressive (SAR)
Model

a Modeling Spatial Data
b The spatial weight matrix
c Estimation
d On normalization

5 Assignment
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On normalization

λWn
=

( λ
C

)
(CWn)
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Which λ-values?

Two remaining (and related) issues
−→ λWn =

(
λ
C

)
(CWn) for any constant C

−→ We assumed Sn(λ) = In − λWn to be invertible

These issues are important because they determine the
parameter space over which to optimize the concentrated
log-likelihood

Normalize the spatial weight matrix Wn. Two normalization
schemes are popular:

1 Spectral-normalization
2 Row-normalization
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Focusing on Symmetric Weight Matrices

For simplicity, assume Wn = W ′
n (restrictive in

theory/practice?)

Recall eigenvalue decomposition Wn = VnΛnV ′n
Vn ∈ Rn×n stacks eigenvectors in columns
Λn = diag(κ1(Wn), . . . , κn(Wn)) ∈ Rn×n where
−→ κi (Wn) denotes the i th eigenvalue of Wn

−→ κi (Wn) is a real
−→ κ1(Wn) ≥ κ2(Wn) ≥ · · · ≥ κn(Wn)

V ′nVn = VnV ′n = In

The key insight is

Sn(λ) = In − λWn = VnV ′n − λVnΛnV ′n = Vn (In − λΛn)V ′n

=> Sn(λ) has eigenvalues 1− λκi (Wn) (i = 1, . . . , n) <=
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Spectral-normalization

Sn(λ) is invertible if all its eigenvalues are unequal to zero

1− λκi (Wn) 6= 0 for all i = 1, . . . , n. (2)

For spectral-normalization, condition (2) is satisfied using
1 Renormalize Wn to W ∗

n = Wn/maxi=1,...,n |κi (Wn)|
2 Ensure that the maximum eigenvalue of W ∗

n is equal to one2

3 Optimize concentrated log-likelihood over λ < 1, then

λk1(W ∗
n ) < 1 =⇒ Sn(λ) invertible

2This is either trivially satisfied or requires multiplying W ∗
n by -1
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Row-normalization

Wn often has non-negative elements

For row-normalization, condition (2) is satisfied using
1 Renormalize Wn using [W ∗

n ]ij = [Wn]ij/
∑n

j=1[Wn]ij . In words:
all row-sums of W ∗

n are made equal to one
2 Optimize concentrated log-likelihood over λ < 1, then

λk1(W ∗
n ) < 1 =⇒ Sn(λ) invertible

This works because W ∗
n is now a row-stochastic matrix

−→ W ∗
n has an eigenvalue equal to 1 (why?)

−→ No eigenvalues of W ∗
n can exceed 1 because all elements of

W ∗
n x are convex combinations of x1, . . . , xn
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The Estimation Approach (3)

1 Select Wn and normalize

2 Maximize the concentrated log-likelihood

log Ln(λ) = −n
2

(
log(2π)+1

)
− n

2 log
(
σ̂2(λ)

)
+log

(
det(Sn(λ))

)
to determine the MLE λ̂

“Easy” univariate optimization problem (grid search,
Newton-Rhapson, etc.) due to likelihood concentration
Normalization provides admissible values for λ

3 Consider yn − λ̂Wnyn = Xnβ + εn
Newly computed dependent variable yn − λ̂Wnyn
OLS estimator equal β̂(λ̂)
Average SSR is σ̂2(λ̂)
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Extra 1: Asymptotic Results in Lee (2004)

The objective function is nonlinear =⇒ no finite sample results

Lee (2004) provides explicit conditions guaranteeing
consistency of the MLE

Normally distributed errors are not needed... assuming
εn ∼ N(0, σ2In) is just a convenient way of finding an estimator
(compare OLS)

Asymptotic normality also holds (albeit under more restrictive
conditions) and allows for inference
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Extra 2: Other Estimation Approaches

IV estimation in Kelejian and Prucha (1998)
Lin and Lee (2010) investigate GMM

Remarks:
IV and GMM allow for heteroskedasticity

Instruments are readily available (why?)

ML is most efficient (“smallest” asymptotic covariance matrix)
under homoskedasticity
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Specific Overview for this Lecture

4 Spatial econometrics: the Spatial Autoregressive (SAR)
Model

a Modeling Spatial Data
b The spatial weight matrix
c Estimation
d On normalization

5 Assignment =⇒ You have seen the three exercises!
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