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Exercise 1
If X1, . . . , Xn

i.i.d.∼ N(µ, σ2), then X̄ ∼ N
(
µ, σ

2

n

)
. This implies that X̄−µ

σ/
√
n
∼ N(0, 1) is a pivotal

quantity. This pivotal quantity is used in parts (a)-(c).

(a) We have

P

(
−z1−α2 <

X̄ − µ
σ√
n

< z1−α2

)
= 1− α,

and thus also

P
(
X̄ − z1−α2

σ√
n
< µ < X̄ + z1−α2

σ√
n

)
= 1− α.

With z1−α2 = z0.95 = 1.645 (see Table 3), a 90% confidence interval for µ is(
x̄− z1−α2

σ√
n
, x̄+ z1−α2

σ√
n

)
=

(
19.3− 1.645

3√
16
, 19.3 + 1.645

3√
16

)
= (18.067, 20.534).

(b) By similar steps as in part (a), we have

P

(
X̄ − µ

σ√
n

< z1−α

)
= 1− α, P

(
−z1−α <

X̄ − µ
σ√
n

)
= 1− α,

P
(
X̄ − z1−α

σ√
n
< µ

)
= 1− α, P

(
µ < X̄ + z1−α

σ√
n

)
= 1− α.

With z1−α = z0.90 = 1.282 (see Table 3), one-sided 90% confidence limits for µ are

l(x1, . . . , xn) = x̄− z1−α
σ√
n

= 19.3− 1.282
3√
16

= 18.339,

u(x1, . . . , xn) = x̄+ z1−α
σ√
n

= 19.3 + 1.282
3√
16

= 20.262.

(c) The length of the confidence interval is 2z1−α2
σ√
n

. We need

2z1−α2
σ√
n
≤ λ ⇒ 1√

n
≤ λ

2z1−α2 σ
⇒ n ≥

(
2z1−α2 σ

λ

)2

.

For the given numerical values, this evaluates to a required sample size of n ≥ ( 2·1.645·3
2 )2 =

24.354. We round to n = 25.
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(d) The pivotal quantity X̄−µ
s/
√
n
∼ t(n− 1) yields

P
(
−t1−α2 <

X̄ − µ
s/
√
n
< t1−α2

)
= 1− α,

and

P
(
X̄ − t1−α2

s√
n
< µ < X̄ + t1−α2

s√
n

)
= 1− α.

With t1−α2 (n− 1) = t0.95(15) = 1.753 (see Table 6), a 90% confidence interval for µ is(
x̄− t1−α2

s√
n
, x̄+ t1−α2

s√
n

)
=

(
19.3− 1.753

√
10.24

16
, 19.3 + 1.753

√
10.24

16

)
= (17.898, 20.702).

(e) The pivotal quantity (n−1)S2

σ2 ∼ χ2(n− 1) yields

P
(
χ2
α
2
<

(n− 1)S2

σ2
< χ2

1−α2

)
= 1− α,

and

P

(
(n− 1)S2

χ2
1−α2

< σ2 <
(n− 1)S2

χ2
α
2

)
= 1− α.

With χ2
α
2

(n− 1) = χ2
0.005(15) = 4.60 and χ2

1−α2
(n− 1) = χ2

0.995(15) = 32.80 (see Table 4),

a 99% confidence interval for σ2 is obtained as(
(n− 1)s2

χ2
1−α2

,
(n− 1)s2

χ2
α
2

)
=

(
15 · 10.24

32.80
,

15 · 10.24

4.60

)
= (4.683, 33.391)

Exercise 3

(a) The pivotal quantity 2nX̄
θ ∼ χ2(2n) yields P

(
2nX̄
θ < χ2

γ

)
= γ and P

(
2nX̄
χ2
γ
< θ
)

= γ. With

χ2
γ(2n) = χ2

0.95(100) = 124.34 (see Table 4), a one-sided lower 95% confidence limit for θ
is obtained as

l(x1, . . . , xn) =
2nx̄

χ2
γ

=
2 · 50 · 17.9

124.34
= 14.396.

(b) Note that e−t/θ is a monotone increasing transformation of θ. This implies that a lower
confidence limit for θ can be transformed into a lower confidence limit for e−t/θ. The details
are as follows:

0.95 = P
(
l(X1, . . . , Xn) < e−

t
θ

)
= P

(
ln l(X1, . . . , Xn) < − t

θ

)
= P

(
− t

ln l(X1, . . . , Xn)
< θ

)
.

In part (a) we have found the lower bound of 14.396, hence − t
ln l(x1,...,xn) = 14.396. We

find l(x1, . . . , xn) = e−
t

14.396 as a one-sided lower 95% confidence limit for P(X > t) = e−
t
θ .

Note: The exercise states ‘where t is an arbitrary known value’. Note however that the
choice t = 0 should be excluded.
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Exercise 5

(a) The pdf of the EXP(1, η) distribution is f(x; η) = e−(x−η) and we can integrate to find the
cdf F (x; η) =

∫ x
η
e−(t−η)dt = 1 − e−(x−η) for x > η (and zero otherwise). The pdf for the

minimum is thus

fX1:n(x; η) = n[1− F (x; η)]n−1f(x; η) = n
[
e−(x−η)

]n−1

e−(x−η) = ne−n(x−η), x > η.

It is clear from the form of this pdf that η is a location parameter. The transformation
Q = X1:n − η (with inverse transformation X1:n = Q+ η) yields

fQ(x) = fX1:n−η(x; η) = ne−nx, x > 0.

We see that Q ∼ EXP(1/n). This distribution does not depend on η and Q is thus a pivotal
quantity.

(b) An 100γ% equal tailed confidence interval is given by P (q1 < Q < q2) = γ where the
quantiles q1 and q2 should satify P (Q ≤ q1) = FQ(q1) = 1−γ

2 and P (Q ≥ q2) = 1−FQ(q2) =
1−γ

2 . An explicit calculation of the cdf, FQ(x) =
∫ x

0
ne−ntdt = 1− e−nx, leads to

1− e−nq1 =
1− γ

2
e−nq2 =

1− γ
2

q1 = − 1

n
ln

(
1 + γ

2

)
q2 = − 1

n
ln

(
1− γ

2

)
Finally,

P

(
− 1

n
ln

(
1 + γ

2

)
< X1:n − η < −

1

n
ln

(
1− γ

2

))
= γ

P

(
X1:n +

1

n
ln

(
1− γ

2

)
< η < X1:n +

1

n
ln

(
1 + γ

2

))
= γ

such that (
x1:n +

1

n
ln

(
1− γ

2

)
, x1:n +

1

n
ln

(
1 + γ

2

))
is a 100γ% equal tailed confidence interval for η.

(c) It should be understood from the exercise (although this is not very clear) that the mileages
are EXP(θ, η) distributed. If X ∼ EXP(θ, η), then Y = X/θ (θ > 0) has the pdf

fY (y) = fX(θy; θ, η) |θ| = 1

θ
e−

(θy−η)
θ θ = e−(y− ηθ ), y >

η

θ
.

This is the pdf of an EXP(1, η∗) distribution where η∗ = η
θ . We can use the result from

part (b) to derive

P

(
Y1:n +

1

n
ln
(1− γ

2

)
<
η

θ
< Y1:n +

1

n
ln
(1 + γ

2

))
= γ,

P

(
X1:n +

θ

n
ln
(1− γ

2

)
< η < X1:n +

θ

n
ln
(1 + γ

2

))
= γ.
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A 90% confidence interval for η is obtained as(
x1:n +

θ

n
ln
(1− γ

2

)
, x1:n +

θ

n
ln
(1 + γ

2

))
=

(
162 +

850

19
ln(0.05), 162 +

850

19
ln(0.95)

)
= (27.980, 159.705).

Exercise 7

(a) We need to find the distribution of Y = X2 when X ∼ WEI(θ, 2). The transformation
Y = X2 has the inverse transformation X =

√
Y such that the pdf of Y is given by

fY (y; θ) = fX(
√
y ; θ)

∣∣∣∣ 1

2
√
y

∣∣∣∣ =
2

θ2

√
ye
−
(√

y

θ

)2 1

2
√
y

=
1

θ2
e−

y

θ2 , y > 0.

We conclude that Y ∼ EXP(θ2). Using the distributional result from Example 11.2.1, we

have
2
∑n
i=1X

2
i

θ2 = 2nȲ
θ2 ∼ χ

2(2n).

(b) From
2
∑n
i=1X

2
i

θ2 ∼ χ2(2n), we obtain

P
(
χ2

1−γ
2

<
2
∑n
i=1X

2
i

θ2
< χ2

1+γ
2

)
= γ ⇒ P

√√√√2
∑n
i=1X

2
i

χ2
1+γ
2

< θ <

√√√√2
∑n
i=1X

2
i

χ2
1−γ
2

 = γ.

A 100γ% confidence interval for θ is

(√
2
∑n
i=1 x

2
i

χ2
1+γ
2

,
√

2
∑n
i=1 x

2
i

χ2
1−γ
2

)
.

(c) Note that exp
[
− (t/θ)2

]
is an increasing function in θ2. A lower confidence limit for θ2

can thus be manipulated into a lower confidence limit for P(X > t) = exp
[
− (t/θ)2

]
. We

find this lower confidence limit from

γ = P
(

2
∑n
i=1X

2
i

θ2
< χ2

γ

)
= P

(
θ2

2
∑n
i=1X

2
i

>
1

χ2
γ

)
= P

(
θ2 >

2
∑n
i=1X

2
i

χ2
γ

)
.

The remaining steps of the calculation are as follow

γ = P

(
1

θ2
<

χ2
γ

2
∑n
i=1X

2
i

)
= P

(
−t2

θ2
>

−t2χ2
γ

2
∑n
i=1X

2
i

)
= P

(
exp

[
−(t/θ)2

]
> exp

( −t2χ2
γ

2
∑n
i=1X

2
i

))
,

where we used t > 0 (the case t = 0 should be excluded because P(X > 0) = 1). A lower

100γ% confidence limit for exp
[
− (t/θ)2

]
is l(x1, . . . , xn) = exp

(
−t2χ2

γ

2
∑n
i=1 x

2
i

)
.

(d) We first need to compute the pth percentile for the given Weibull distribution. If we denote
this percentile by xp, then xp satisfies the equation P

(
X ≤ xp

)
= p

100 . With

F (x; θ) =

∫ x

0

2

θ2
te−( tθ )

2

dt = −
∫ x

0

(
− 2t

θ2

)
e−

t2

θ2 dt = −e−
t2

θ2

∣∣∣x
0

= 1− e−
x2

θ2 , x > 0,

the pth percentile is obtained as

1− e−
x2p

θ2 =
p

100
⇒ xp =

√
−θ2 ln

(
1− p

100

)
.
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The expression
√
−θ2 ln

(
1− p

100

)
is again an increasing function in θ2. An upper confi-

dence limit for θ2 will thus imply an upper confidence limit for the pth percentile of the
distribution. We have

γ = P
(
χ2

1−γ <
2
∑n
i=1X

2
i

θ2

)
= P

(
θ2 <

2
∑n
i=1X

2
i

χ2
1−γ

)

and by noting that − ln
(
1− p

100

)
is a positive quantity

γ = P

(
−θ2 ln

(
1− p

100

)
<
−2 ln

(
1− p

100

)∑n
i=1X

2
i

χ2
1−γ

)
= P

(
xp <

√
−2 ln

(
1− p

100

)∑n
i=1X

2
i

χ2
1−γ

)
.

An upper 100γ% confidence limit for the pth percentile is thus

√
−2 ln(1− p

100 )
∑n
i=1 x

2
i

χ2
1−γ

.

Exercise 11
The setting corresponds to a random sample from the BIN(1, p) distribution. If X ∼ BIN(1, p),
then E(X) = p and Var(X) = p(1− p). The CLT implies that

√
n(X̄ − p)√
p(1− p)

d−→ Z ∼ N(0, 1).

Now note that p̂ = X̄ is a consistent estimator for p such that also
√
n(X̄−p)√
p̂(1−p̂)

d−→ Z ∼ N(0, 1).

Hence, for large n, we find

P

(
−z1−α2 <

√
n(p̂− p)√
p̂(1− p̂)

< z1−α2

)
≈ 1− α,

P

(
p̂− z1−α2

√
p̂(1− p̂)

n
< p < p̂+ z1−α2

√
p̂(1− p̂)

n

)
≈ 1− α.

With p̂ = 5
40 = 1

8 and z1−α2 = z0.95 = 1.645 (see Table 3), an approximate 90% confidence
interval for p is obtained as(

p̂− z1−α2

√
p̂(1− p̂)

n
, p̂+ z1−α2

√
p̂(1− p̂)

n

)
=

1

8
− 1.645

√
1
8 ·

7
8

40
,

1

8
+ 1.645

√
1
8 ·

7
8

40


= (0.039, 0.211).

Exercise 12

(a) Equation (11.3.20) implies that P
(
X̄−µ√

µ
n

< zγ

)
≈ γ for large n. We need to manipulate

the inequality inside the probability. Having this in mind, we define θ =
√
µ, such that

γ ≈ P

(
X̄ − µ√

µ
n

< zγ

)
= P

(
X̄ − θ2

θ√
n

< zγ

)
= P

(
θ2 +

zγ√
n
θ − X̄ > 0

)
.
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The solutions of the quadratic equation θ2 +
zγ√
n
θ− X̄ = 0 are θ1 = − zγ

2
√
n
−
√

z2γ
4n + X̄ and

θ2 = − zγ
2
√
n

+

√
z2γ
4n + X̄. Since θ > 0 and θ1 < 0, it always holds that θ − θ1 > 0, and the

above can be written as

γ ≈ P
(

(θ − θ1)(θ − θ2) > 0
)

= P(θ − θ2 > 0) = P(θ2 < θ) = P(θ2
2 < µ)

= P

(− zγ
2
√
n

+

√
z2
γ

4n
+ X̄

)2

< µ

 .

With zγ = z0.90 = 1.282 (see Table 3), an approximate one-sided lower 90% confidence
limit for µ is obtained as

l(x1, . . . , xn) =

(
− zγ

2
√
n

+

√
z2
γ

4n
+ x̄

)2

=

(
−1.282

2
√

45
+

√
1.2822

4 · 45
+ 1.7

)2

= 1.468.

(b) For large n, Equation (11.3.21) yields

γ ≈ P

X̄ − µ√
X̄
n

< zγ

 = P

(
X̄ − zγ

√
X̄

n
< µ

)
.

With zγ = z0.90 = 1.282 (see Table 3), an approximate one-sided lower 90% confidence
limit for µ is obtained as

l(x1, . . . , xn) = x̄− zγ
√
x̄

n
= 1.7− 1.282

√
1.7

45
= 1.451

Exercise 19
For the pdf of the N(µ1, σ

2
1) distribution with µ1 known, we have f(x;σ2

1) = (2πσ2
1)−1/2 exp

(
− 1

2
(x−µ1)2

σ2
1

)
.

This pdf is a member of the REC with t(x) = (x−µ1)2. S1 =
∑n1

i=1(Xi−µ1)2 is thus a sufficient
statistic for σ2

1 . Similarly, S2 =
∑n2

j=1(Yj − µ2)2 is a sufficient statistic for σ2
2 .

The mean and standard deviation of the normal distribution are location-scale parameters.

It is therefore easily shown that X1−µ1

σ1
, . . . ,

Xn1
−µ1

σ1
∼ N(0, 1) and Y1−µ2

σ2
, . . . ,

Yn2
−µ2

σ2
∼ N(0, 1)

and this implies both S1

σ2
1

=
∑n1

i=1(Xi−µ1

σ1
)2 ∼ χ2(n1) and S2

σ2
2

=
∑n2

j=1(
Yj−µ2

σ2
)2 ∼ χ2(n2). By

taking ratios and rescaling we can find the pivotal quantity:

n2σ
2
2

n1σ2
1

S1

S2
=

(
S1

σ2
1

)
/n1(

S2

σ2
2

)
/n2

d
=
χ2(n1)/n1

χ2(n2)/n2
∼ F (n1, n2),

where
d
= is used to denote equivalence in distribution. Denoting the α quantile of the F (n1, n2)

distribution by fα, we obtain

P
(
fα

2
<
n2S1σ

2
2

n1S2σ2
1

< f1−α2

)
= 1− α ⇒ P

(
fα

2

n1S2

n2S1
<
σ2

2

σ2
1

< f1−α2
n1S2

n2S1

)
= 1− α.

A 100(1− α)% confidence interval for
σ2
2

σ2
1

is
(
fα

2

n1s2
n2s1

, f1−α2
n1s2
n2s1

)
.
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