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Exercise 1

(a) If X1,..., X, =

"N(w, 1), then Xop V(X — p) ~ N(0,1). For the rejection region A,
we realize that
X — = —a
:P< M<—z1aﬂ:20>:IP’(X<u—zl

1/vn
= W= 20> .
1/v/n NG

Using zp.95 ~ 1.645 and filling in the values, we find the reject region A = {Z| — 00 <
T < 19.589}. For rejection region B we will reject in the right tail of the distribution. The
Zl—a

calculation
Xy _ }
S (i ulp=20)=P( X =20,
° (Uﬁ”l 8 ) (>“+\/ﬁ’“‘ )

shows that the rejection region B takes the form {Z|20.411 < Z < co}.

(b) We need the probability to not reject even though the null hypothesis is false. For the
critical region A, we have

- X —21  19.589 —21
}P’(TH):]P’(X>19.589;;:21):1[”( 9.589 ‘M=21>

1//16 ~ 1/v/16
=P(Z > —5.64) = ®(5.64) =~ 1.

For critical region B, the probability of a Type II error is

_ X —21 20.411-—21
P(TII) :]P’(X<20.411u:21):IP’( ‘uz )

<
1/\/16 1/\/16
= P(Z < —2.36) ~ 0.01.

Comparing the probabilities of these Type II errors, we conclude that critical region A is
unreasonable for this alternative.

(c) For critical region A, we have

, X —19 _ 19.589 — 19
P(TII) = P(X > 19.58|u = 19) = P ( ‘ o= 21)

Vi6 . 1/v16
= P(Z > 2.36) = ®(—2.36) ~ 0.01,



whereas for critical region B we get

7 X-19 204111
}P’(TH):]P’(X<20.411p:19):}P’( ) 2 9‘;;;21)

1/v/16 = 1//16
=P(Z <5.64) ~ 1.

This time the unreasonable critical region is region B.

(d) We have
P(X € (AUB)|p=20) =P (X € A|u=20) + P (X € B|p=20) =0.05+ 0.05=0.1,

since the critical regions A and B are disjoint (probabilities add up). The significance level
for the test with rejection region AU B is thus 10%.

(e) The condition | — 20| = 1 implies either p = 19 or u = 21. We first consider p = 19. Since
A and B are disjoint, the probability to reject the null equals

P('reject'|n=19) = P(X € Alp =19) + P(X € B|u = 19)
=P(X < 19.589|u = 19) + P(X > 20.411|pu = 19)
19.589 — 1 20.411 — 1
=P (Z < 19.589 — 19 9) +P (Z > 20411 — 19 9) = $(2.356) + ®(—5.644)
1/V16 1/v/16
~ 0.9908.

The probability for a Type II error is thus 1 — 0.9908 =~ 0.92%. We can perform a similar
calculation for p = 21, that is

P('reject'|n=21) =P(X € Alp=21)+P(X € B|p=21)
— P(X < 19.589|u = 21) + P(X > 20.411|p = 21)
+P

19.589 — 21 20411 - 21
:IE”<Z 9.5 ) ( 0

[ — Z >
= TV

") = B(—5.644) + $(2.356

The probability for a Type IT error is thus 1—0.9908 ~ 0.92%. We see that rejection region
AU B controls the Type II error for alternatives that are both lower and higher than the
value under the null.

Exercise 3

(a) The value of the Z-statistic is equal to zg = j/_j% = ;}\_/% ~ —2.236. According to the
alternative hypothesis, we will reject in the left tail of the distribution. The critical value
is —zp.99 &~ —2.326. Since zg > —2.236, we do not reject Hy.

(b) Making use of the power function 7(u) as defined in Theorem 12.3.1, we find that the
probability of a Type II error is

Lo — 10.5) < 12 — 10.5)
=1-7(105)=1-® (-2 o+ —F——F—— | =1—-P | 2326+ ———
#=1n(109) =10 (-ane+ K70 T

=1— $(1.028) ~ 0.15.



(c) We use point 4. of Theorem 12.3.1. With z1_, = 20,99 = 2.326 and z1_g = 29,9 = 1.282,
the required sample size is

s ot o) | (23261128224
- (w—-p? 0 (12-1052 T

At least n = 24 observations are required.

(d) The numerical value of the t-test is equal to tg = f;\’/‘% = i}\} —1.118. We should

reject the null hypothesis whenever tg < —tg.99, Where tg.99 denotes the 99% quantile of
t-distribution with 19 degrees of freedom. We find tg 99 ~ 2.539. Since tg > —2.539, we do
not reject the null hypothesis.

(e) According to Theorem 12.3.3, we can use the test statistic vg = (n aé) = (0= 1)X16

33.78. For the given alternative, we should reject whenever vy > X3 gq, Where Xo 99 denotes
the 99% quantile of the x2-distribution with 19 degrees of freedom. We have x2 g9 ~ 36.19
and hence do not reject the null hypothesis.

~
~

(f) According to Theorem 12.3.3, the power function is 7(0?) = 1 — H(Z—éx%_a(n —1);n—1),
where H(z;n — 1) denotes the CDF of the x?(n — 1) distribution. We write

0_2

1-H (Cfgxﬁa(n —1);n— 1) >0.9
0.2

H (gxfa(n —1);n— 1) <0.1
(o)

Sxf an=1) <xg1(n—1)

X0.1(”— 1) > Uj

Xffa(ni 1) - 02
2 _

Xo.1(n—1) > 9 1

X(2)499(n_ I 18 2

Going through Table 4, it can be seen that the above holds if n — 1 > 60. Hence at least
n = 61 observations are required (note that Table 4 does not contain values for degrees of
freedom between 50 and 60, though). The probability of a Type II error if o2 = 18 is

2

6=1- 0" = 1 (B~ Din—1) =1 (fad ol = 1in 1)
—H( X2.00(60); 60) H(44.19; 60)

whose value is not in Table 5, but could be computed with the approximation given there
for large degrees of freedom.

Exercise 4
The pdf of X is f(z;p) = P(X = z) = p(1 — p)*~! for x = 1,2,..., since there are x — 1
unsuccessful tosses with probability (1 —p)®~! before the first successful toss with probability p.



(a) For the probability of a Type I error we need the probability to reject when Hy is true. We
thus use p = 0.80, or

P(X >3|p=0.80) =1—P(X = 1|p = 0.80) — P(X = 2|p = 0.80)
=1-p(1—-p)°—p(l-p)=1—p—p(l—p)=(1-p)*=0.20° = 0.04.

(b) We need the probability to not reject when p = 0.20 and p = 0.30. For general p, the
probability of a Type II error is

P(X < 3|p) =P(X = 1|p) + P(X =2|p) = p(1 —p)° + p(1 —p) =p+p(1 - p)
=p(2 - p).

Denoting the probability of a Type II error by 3, we have 8 = 0.20(2 — 0.20) = 0.36 and
B =10.30(2 — 0.30) = 0.51, for p = 0.20 and p = 0.30 respectively.

(¢) Let us calculate the rejection probability for arbitrary p. We have

P (X €{1,14,15,...}]p) = P(X = 1|]p) + Y P(X = z[p)
r=14
=p(1—p)°+ > pl-p)" ' =p+(1-p)"> p(l -p)°
=14 =0
:P+(1—p)13ﬁ =p+(1-p)",

using the following result on geometric series: > o jar® = 1% for |r| < 1. We can find
the probability of a type I error by evaluating the expression above for p = 0.30, that is
0.30 4+ 0.70'3 = 0.310. For the type II error we need the probability to not reject. So
denoting the probability of the type II error by 3, we find

B=P(X ¢{1,14,14,.. }p)=1— (p+ (1 —p)")

whenever p # 0.30. For p = 0.20, this gives 3 = 1 — (0.20 + 0.80'3) = 0.745. For p = 0.80,
we obtain 8 =1 — (0.80 + 0.20'3) = 0.200.

Exercise 9

(a) We first compute the pooled variance estimate

2 (n1 —1)s? + (ny — 1)s3 :8'36—’_8'45 = 40.5.
p ny +mng — 2 16

The t-statistic now takes the value t = g?i — = 10_16 = —2. Under the null
Sp\/rl+6 \/40.5(%*‘1’%)

hypothesis, this statistic follows a ¢t-distribution with n; +ns—2 = 9+9—2 = 16 degrees of

freedom. If g g5 =~ 1.756 denotes the 95% quantile of this distribution, then we will reject

if [t] > 1.756. We have —2 < —1.756 and therefore reject the null.

(b) From Equation (11.5.14) we estimate the degrees of freedom as

L (s3/ny+s3/n2)”  (36/9 +45/9)° s
(s3/m1)" | (s3/ma)” — G697 (45/9)"

n1—1

T’LQ—l 8



and compute the corresponding critical value by linear interpolation
to.95 = t0_95(15) + 0805(t095(16) — t0_95(15)) =1.753 + 0805(1746 — 1753) = 1.747.

We will thus reject the null hypothesis if the absolute value of the observed test statistic
exceeds 1.747. A calculation of this test statistic gives

y— T 10 — 16
tO: = = —2,

2 2
sty st 36, 45
\/n1 + no 9 + 9

and we therefore reject the null hypothesis.

c¢) The value of the test statistic is tg = 2% = 0=16 — 9 We should compare this
sp/vn 9/v9

outcome with the 95% quantile of the ¢-distribution with (9 — 1) = 8 degrees of freedom.
The implied critical value is 1.860. Since | — 2| > 1.860 we reject the null hypothesis.

(d) We use Theorem 12.3.4. We compute the test statistic as fo = z—z = 30 = 0.8. If we
2

let fi—a(n2 — 1,n; — 1) denote the (1 — «)-quantile of the F-distribution with (ne, — 1)
and (n; — 1) degrees of freedom, then we should reject whenever fo < We find

fO:_L% = ﬁ = 0.29 and do not reject Hy.

1
fi—a’

2 2
(e) We have to derive the power function at 23 = 1.33. For general Z3, we find
1 1

)+ ()
o1 S5 7 fica 02

2 2 2> 2
oy S5 o1 fi—a 0%

[(m = 1)87/o?)/(ni 1) _ 1 03|03\ _ (e 1 o}
<[<n2—1>53/o—§]/<n2—1> = ol o%)‘P(” e

where F'(ny — 1,n2 — 1) denotes an F-distributed random variable with (nq; — 1,9 — 1)
2
72 = (0.387 we find this probability to be equal

degrees of freedom. After calculating f% -
o2

approximately 0.1.

Exercise 11

(a) We use the Neyman-Pearson Lemma, Theorem 12.6.1 from B&E. We should reject the

nulll hypothesis when A(z;1,2) = %;ﬁ;; = ﬁ is small, or equivalently for large x. To find

the most powerful test with significance level «, we require that

1
IP’(XZC|9:1):/ fla;D)de =1-c=qa.

The most powerful critical region of size « for testing Hy : 8 = 1 versus H, : 0 = 2 is thus
C* ={z|x > 1— a}. For the given significance level we would reject when = > 0.95.

(b) The power function is

1

m(0) =P(X >0.950) = [ f(x;0)dx = 27|

005 = 1—(0.95)°.
0.95

For § = 2 we have m(2) = 1 — 0.95% = 0.0975.



(¢) The joint pdf of Xy, ..., X, = [T7, 62" = 62 ([T"_, «:)"" and hence

1
2nIIZ:1xi.

We should reject the null hypothesis for small values of A(z1,...,2,;1,2). This coin-
cides with large values of []!"_; z;. The distribution of [];_, X; is difficult to establish.
However, we can apply additional monotone transformations. Note that rejection for
large [, z; is equivalent to rejection for large Y ., In(z;), is equivalent to rejection
for small Y7 | —In(x;). This will turn out to be helpful because if X has pdf f(z;6), then
Y = —In(X) had pdf

/\('rla--~7$n;172) =

fyy) = fxe¥) | —e ¥ =0 (e_y)e_l e Y =0e7%, y > 0.

Apparently, Y is EXP(1/6) distributed and thus —26 >""" | In(X;) = % ~ x%(2n). Since

we agreed to reject for small values of . | —In(z;), we compute the critical value from

]P’(ilnXi <cl|O= 1> ]P’(QilnXi SZC) = q.

i=1 i=1

We find ¢ = x2 /2, where x2 denotes the 100a% quantile of the x?(2n) distribution. The
most powerful critical region of size « for testing Hy : § = 1 versus H, : § = 2 is thus

C* = {(ajl,...,xn) > Inz; < %}

Exercise 12

(a) We use the Neyman-Pearson Lemma, Theorem 12.6.1 from B&E. Using the pdf f(z;p) =
e Mu”
—— we find

e Moug T
Az _ x! _ pui—po [ PO
(x7,u0ay‘1) - e~ M1 p? =e€ - .
1 H1

!

We should reject when A(x; po, p1) is small, or equivalently when

xT xr k
e —Ho (’“J) <k = ("0) <—1 _—k = zh (“O> < In(ks) = ks
H1 H1 eMt1—Ho 1

ks
In (ﬂ)

1251
where k1, ko, k3 and ¢ are the constants to be determined to control size. Also note that
In(po/p1) < 0 because p1 > g is given in the exercise. To obtain the correct significance
level we should define the rejection region such that P(X > c|lu = po) =1 — F(¢; o) = .

The critical value ¢ is thus F~!(1 — a; uo). The most powerful critical region of size a for
testing Hy : p = o versus H, : u = pq is thus C* = {x ’:I: > F~ Y1 — ;o) }

= x> =g,

(b) The joint pdf of Xy,..., X, is f(z1,...,zn;p0) = [[1n, b = eiw“ZLl;i . We find

1=1 I,(' (H?:l xl‘

_ >z
e St =1 T

0 - E?:l Tq
A@; g, pr) = — =2 — nln—po) (MO) '

e—nululz;:l T4 w1

(Il b



We should reject when A(x; o, p1) is small, or equivalently when

S e Sr e
e —po) (@) <k = (/‘0) < Ky = ko
H1 M1 en(r1—po)
n ILI/O n ks
= zpim<>gmm=m = (2%02 =c,
<i:1 > m i=1 In (%)
where k1, ko, k3 and ¢ are the constants to be determined to control size. If Xq,..., X, ~

POI(u), then Y » , X; ~ POI(nu) (see Example 6.4.5). To obtain the correct signifi-
cance level we should define the rejection region such that P(3°" , X; > ¢|p = po) =
1 — F(e;npp) = a. The critical value ¢ is thus F~1(1 — a;npug). The most power-
ful critical region of size a for testing Hy : u = po versus H, : pu = pp is thus C* =

{(a:l,...,xn) |Z?:1 ;> F(1 - a;nuo)}.

Exercise 16

Suppose we would test Hy : § = 6y versus H, : § = 0, with 6; > 6. Having simple hypothesis
we could now use the Neyman-Pearson Lemma, Theorem 12.6.1 from B&E. We would get the
joint pdf

2
r 37 3 (T n
flz,...,2,)0) = H z‘l e~Ti/0 — ym <sz> om0 Dia @
i=1 i=1

and
n .3

3" n 2 — 2T
e (T ) e 70 2 <el)n EI
= | — e 1 0 =L
2 —_Lsn 3
o (i w)” e = A
1

The null hypothesis should be rejected if

My, ... xn;bp,61) =

971 e(%_%) Z?:1 zf S kl = e(%_%) ?:1 xf S kl 9—0 = k2
00 91
I 1\ 3 o ks
S P <lInky =k ;> =
- (91 90);%_]@2 o = Yalztroo

where k1, ko, k3 and ¢ are the constants to be determined to control the Type I error. We have
to find the distribution of Y"1 | X2. Let X have pdf f(z;6), then Y = X3 has the pdf

1 1 2 Sy% v 1 2 1 Y
= 3) |2y~ 3| = 073 = e 0 0.
fr(y) = fx (y )’31/ ¢ "3Y gc s y>
We conclude that Y ~ EXP(f) and realize that 2" | X? = % ~ x%(2n). Size control
requires
P ZR:X?»C 0=0,| =P gzan3>§ =«
= bz "~ o ’
2
or (% = x?_,, hence ¢ = 00)‘%7 where x?__ denotes the 100(1 — @)% quantile of the y?(2n)

distribution. The most powerful critical region of size « for testing Hy : 8 = 6 versus H, : 6 = 6,
, 2
(where 61 > 0p) is thus C* = {(ml, cey ) ‘Zf:l 3> GOX% } Since the critical region C*



does not depend on a specific value of 0, > 6, it corresponds to a uniformly most powerful test
for Hy : 0 = 6y against H, : 0 > 6.

Exercise 17

(a)

We first consider Hy : 0 = 0¢ and H, : 0 = 01 with 01 > 07. We use the Neyman-Pearson
Lemma, Theorem 12.6.1 from B&E. The joint pdf

n
1 _ =5 _ _l_sn 2
F@re. i) = [[ oo o = @m0 /27 it
o1 V2mo
and
—5tr Yy a? n
— o i=1""1 n
| (2mod) "2 o1\" (o) St
Az1, ... xn;00,01) = el B e\?71 29 .
i=1"1
(2mof)—n/2e 271 0
o is rejected i T1,...,%n;00,01) is too small, or equivalen
H ted if AM(zq,...,2,; 00, t 11, lently,
n
1 1 n 2 1 1 n 2 n
0\ (s, L ) E L, (o
1) e\20F 263 ZITSkl =  e\207 253 111Sk_1 70 = ky
(1) 01

1 I\ o “ k3
307 397 ) 2T Shka=ks = ) @iz =c
1 0/ =1 i=1 207 203
where k1, ko, k3 and ¢ are the constants to be determined to control the Type I error. If
n 2
X1,...,X, ~ N(0,0?), then 23712)( ~ x%(n). We can thus control the probability of a
Type I error by requiring

" noX2
P(Lxzeloma)<p (s ) o

2
i=1 90 90

This implies % = x3_,, or ¢ = 03xj_,, where x7_,, denotes the 100(1 — )% quantile of
0

the x?(n) distribution. The most powerful critical region of size « for testing Hp : o = 0y

versus H, : 0 = o1 (where o1 > o0¢) is thus C* = {(z1,...,2z) |21 22 > 0dxi , }-

Since the critical region C'* does not depend on a specific value of o1 > oy, it corresponds

to a uniformly most powerful test for Hy : 0 = 0¢ against H, : 0 > 0y.

The power function is

i) 2 (x> b
=1

i X7 b s
= ]P) = L >
U) ( 0'2 = O,Qleoz

where H(z;n) denotes the CDF of the x?(n) distribution.

(¢) m(4) =1 — H (1x3.095:20) = 1 — H(10.00;20) = 1 — 0.032 = 0.968.

Exercise 27



(a)

The joint distribution of X1, ..., X, is f(z;0) = [[/_, 3e~%/% = ="e="#/¢_If the null is
true, then 6 has to equal y. The unrestricted ML estimate is 6=z (see Example 9.2.7).

This implies

Al@) = maxgeq f(x;0) - f(;0) T e ™

maxoeq, f(2:60) _ f(@i60) _ G "e % <£>"en<1_m

and

—2In (M) = —2n (1 - 9% +In (;Z)) .

The null hypothesis imposes 1 restriction on the parameter space. According to Equation
(12.8.3), an approximate size « test is to reject Hy if

T z
— - — > 2 .
2n (1 % +In (90>> > xXi_o(1)

The parameter space is 2 = [fp,00). There is still only the single parameter value 6
possible under the null. We now compute the ML estimate for 6 € [fp,00). From part
(a) we have the likelihood L(#) = 0~"e~"%/% which implies the log-likelihood In L(#) =
—nln(f) — ZF. The first derivative is

d n  nT n — ifod>z
T P L L B
L) =g+t =—E@-2) {+ if 0 < 7.

For this we conclude that the maximum will equal Z when 0y < Z, or 6y when 6y > Z. We
conclude that

(%) (1= ) if 7/00 > 1,

Ax) =
1 if /0, < 1.

maxgeq, f(x;0) _ {

maxpeq f(x;0)

Now recall that we should reject the null hypothesis for small values of A(x) where ‘small’
should be quantified based on the maximum probability of a Type I error. Under the null,
we have

o2nX

P(A(X) < 1|60) = P(X /0y > 1|0y) = P < > n

90> =P (x*(2n) > 2n)
0

=1-P(x*(2n) < 2n).

From Table 5 in the Appendix C of B&E we can see that this probability varies around
50%. For typical sizes (say 1%, 5%, 10%) we will thus find ourselves in the case where
Z/6y > 1. We will thus assume that o < P(A(X) < 1|6p) (and thus Z/6y > 1).

The rejection regions are of the following forms
N @) < o (Z) e @) < —hy = () e H < kel = ko,
90 00

where k, k1 and ko are the constants to be determined to control the Type I error. To

analysis the inequality (%) e < ko in more detail, we define the function f(y) = ye ¥

T

such that f (%) = (%) e Y.



Note that p
d—yf(y) =eV—ye V¥=(1—-yle Y.

The function f(y) is thus decreasing for y > 1 and returning to the problem at hand we

also have that (%) e o is decreasing for (%) > 1 (our case of interest, i.e. the case when

P

Ax) < 1). Low values of f (%) = (%) e % are thus achieved by high values of -, see
Figure 1 below.

y
Figure 1: A visualization of the function f(y).

We conclude that

<I> 6_% < kleil = ko =
0o

I
Zkg = ﬂZQTLkgzc,
o

éb‘&

where k3 and ¢ are constant to be determined to control the Type I error. Under the null

hypothesis we have % ~ x%(2n), therefore
2nX
IP’< Zo >c 90> =a = c=x1_,(2n).

For typical sizes, the GLR test of size « has critical region

*
C :{.’1?1,...,37"

Exercise 29
We have X1,...,X, ~ UNIF(0, ). The joint pdf is

flxz;0) = H %]l{xi <9}=6""1 {Z_—nllaxnxi < 9}.
=1L

If the null is true, then 6 = 6y, whereas the unrestricted ML estimate is 0 = maxi, . .n T;. We

have .
AMz) = maXoeq, [ (;0) = f(:B,QP) = <max1w,n xi) 1 { max x; < 90}.
maxgeq f(x;0)  f(x;0) 0o i=1om

10



We should reject the null hypothesis when A(z) is small. The most extreme situation occurs
when A(z) = 0 because max;—1, ., 2; exceeds 6p. If this happens, then we know for sure that
we should reject the null hypothesis because the event {max;—1 . ,x; > 6y} cannot occur if
X1,..., X, ~ UNIF(0,6p). Actually, there is not really any reason to conduct a hypothesis test
because we are certain that our null hypothesis Hy : 8 = 0 is false as soon as we observe a
maximum outcome larger than 6y. So let us rule out this scenario, and continue to see what is
happening under Hy.

Under Hy, we have X1, ..., X,, ~ UNIF(0,6y) and we must have 1 {max;—1,. ,X; <6} =1
with probability one. Rejection for small values of A(x) is thus equivalent to rejecting for small
values of maxy, ., x;. Denoting the critical value by ¢, we must have

P('max X;<c

i=1,...,n

00) :P(Xl SC,...,Xn SC| 60): [P(Xl SC|90):|TL: <980> = .

to control for the probability of a Type I error. We conclude that ¢ = 6y o'/, The GLR test of
size « has critical region

*
C :{SEl,...,LL’n

max z; < 0pat/" b .
i=1,...,n

Exercise 31
The joint pdf of the sample is f(a;0) = [[I—, 027~ = 6™ ([T, 2;)""". Under Hy we have only
a single parameter value. It remains to compute the unrestricted estimator. The likelihood is

L(0) = 6™ ([T7, 2:)" " and log-likelihood is

InL(0) =nln(d) + (6 — 1) zn:ln(xi).

The first and second derivative of the log-likelihood with respect to 8 are

d n -
L) =5+ ;ln(zi),
K L(O) = —— <0 for all
2z =~ , or all 6.
We obtain § = —% (the second order condition is automatically fulfilled). The GLR

evaluates to

o masoca, f(@0) _ f@ido) _ 65 ([T, _ (00" (17,
A@) = maxpeq f(2;:0)  f(z0) @) (11" )9*1 a (9) (11:[1 Z)

i=1%i

6o—0

and we can additionally compute

—2In (M(z)) = —2nIn

= —2nln (

7 N
Qb)‘éb
N—

—2(6y — 6) Z In(z;)

)+zn<9°9?é),

%>‘§b

11



where we have used the definition of § to replace 3.7, In(z;). According to Equation (12.8.3),
an approximate size « test is to reject Hy if

0y — 0

—2In (A(z)) = —2nIn (99?) +2n ( 5 ) >3, (1).
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