## **Spatial Econometric Models**

Hanno Reuvers

Excellence Programme 2021–2022



ERASMUS SCHOOL OF ECONOMICS

## **My Conclusions**

- The blessings and curses of economic growth
  - Carbon tax can resolve the "tragedy of the commons"
    - guide technological innovations
    - consumer and producer signalling
    - maybe also some peace of mind?
- Climate resilience dependence on manageability (and by extension on wealth?)
- Econometrics has a role in climate change modelling, especially on the economic side

**Question**: Imagine NL with carbon tax, you are prime minister, what will you do with the revenues?



## Climate Change has a huge spatial component

- Climate change always slips through border security
  - GHGs diffuse freely through space
  - Climate impacts are heterogeneous over space
- As a consequence, climate policy is spatial problem
  - Free-riding and/or climate regulation evasion are a valid concern
  - Should climate compensations vary over space (and over income)?
- Let us consider a "Dutch" example of climate spatial data



## "De Stikstofcrisis"

Satellite image of  $NO_2$  concentration in NL (source: Tropospheric Emission Monitoring Internet Service)



Question: What is the crisis about? Implications? Policy?



# Arriving in Rotterdam, your Courses at Erasmus University...

| Course                           | Typical Data Property            |
|----------------------------------|----------------------------------|
| Statistics                       | i.i.d.                           |
| Intro to Multivariate Statistics | i.i.d.                           |
| Markov Processes                 | time series                      |
| Econometrics 1                   | cross-sectional regression       |
| Econometrics 2                   | heteroskedasticity,              |
|                                  | serial correlation, endogeneity, |
|                                  | limited dependence               |
| Time Series Analysis             | time series                      |

=> Today: Learn how to model spatial data <=



## **Overview of the Lectures**

General considerations on modelling/forecasting climate data

- **2** Three example cases:
  - Case 1: The Tip of the Iceberg
  - Case 2: Climate Change and Agriculture
  - Case 3: Uncomfortable Temperatures
- **3** Some general conclusions
- 4 Spatial econometrics: the Spatial Autoregressive (SAR) Model

## 5 Assignment



## Specific Overview for this Lecture

## 4 Spatial econometrics: the Spatial Autoregressive (SAR) Model

## **a** Modeling Spatial Data

- **b** The spatial weight matrix
- c Estimation
- On normalization

## 5 Assignment



## **Modeling Spatial Data**





## The Spatial Autoregressive (SAR) Model

The SAR model is

$$\mathbf{y}_n = \lambda \mathbf{W}_n \mathbf{y}_n + \mathbf{X}_n \boldsymbol{\beta} + \boldsymbol{\varepsilon}_n, \qquad (1)$$

where  $\varepsilon_n = (\varepsilon_1, \ldots, \varepsilon_n)' \in \mathbb{R}^n$  is a random vector of innovations with  $\mathbb{E}(\varepsilon_i) = 0$  and  $\mathbb{V} \operatorname{ar}(\varepsilon_i) = \sigma^2$ .

=> By convention,  $[W_n]_{ii} = 0$  for all  $i = 1, ..., n \le n$ 

## Some questions:

- What is the interpretation of model (1)?
- How to estimate the unknown parameters  $\lambda$ ,  $\beta$ , and  $\sigma^2$ ?



## SAR = Linear Regression Model + Spatial lag

• Let me (temporarily) delete a term:  $y_n = \frac{\lambda W_n y_n}{\lambda y_n} + X_n \beta + \varepsilon_n$ 

Your econometric Pavlov reaction might be:
 1 This is boring... it's just a multivariate linear regression
 2 Yes, OLS! I love β̂ = (X'X)<sup>-1</sup>X'y

- The new feature is the so-called spatial lag  $W_n y_n$ 
  - $W_n \in \mathbb{R}^{n \times n}$  is the spatial weight matrix
  - $\blacksquare$  Spatial autoregressive parameter  $\lambda$
  - Given  $W_n$  and the observations  $y_n$ ,  $W_n y_n$  is similar to any other regressor? Or maybe not?
  - After today, you can invent your own spatial model because:

known model + spatial lag  $\implies$  unknown new spatial model



## "De Stikstofcrisis" (revisited)



$$oldsymbol{y}_n = \lambda oldsymbol{W}_n oldsymbol{y}_n + oldsymbol{X}_noldsymbol{eta} + oldsymbol{arepsilon}_n$$

- **W**<sub>n</sub>**y**<sub>n</sub>: captures diffusion effects
- X<sub>n</sub>: temperature, traffic intensity, agricultural index, etc.



## Some Economic Examples

- Cigarette demand in the US
- Modeling house prices
- Crime analysis
- SAR model is closely related to social interaction models (see slide 18)

Reasons to include a spatial lag are:

- 1 There are spatial spillover effects
- 2 "Borrowing" omitted variables from neighboring locations



## Specific Overview for this Lecture

- Spatial econometrics: the Spatial Autoregressive (SAR) Model
  - a Modeling Spatial Data
  - **b** The spatial weight matrix
  - c Estimation
  - d On normalization

## 5 Assignment



## The Spatial Weight Matrix





## Specifications of the Spatial Weight Matrix

- The choice of *W<sub>n</sub>* is crucial because it determines how neighboring information is incorporated
- Two main approached to specify **W**<sub>n</sub>:
  - Contiguity
  - Distance-based
- In practice, try several  $W_n$  and compare findings and fit



## Continguity (1)

Contiguity: "the state of bordering or being in contact with something"

Binary contiguity

$$[\boldsymbol{W}_n]_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are contiguous} \\ 0 & \text{if } i \text{ and } j \text{ are not contiguous (and } i = j) \end{cases}$$

We still need to give a geographic meaning to "contiguous"



## Continguity (2)

Sharing a common border



$$\boldsymbol{W}_n = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

Rook contiguity for lattice



$$\boldsymbol{W}_{n} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

**Question (for chess players)**: What are bishop and queen contiguity?



Ô

Ô

0 1 0

## Continguity (3)

**Question**: What does the following  $W_n$  reflect?



## Weight Matrices based on Distances

• Let  $d_{ij}$  denote the distance between spatial units i and j

- Geophysical distance based on, say longitude+latitude
- Distance between centroids of regions
- "Economic" distance based on economic similarity

## Examples:

- Inverse distance:  $[\boldsymbol{W}_n]_{ij} = 1/d_{ij}^{\alpha}$  (typically:  $\alpha = 1$  or  $\alpha = 2$ )
- Exponential decay:  $[\boldsymbol{W}_n]_{ij} = \exp(-d_{ij}/\alpha)$
- Threshold distance:  $[\boldsymbol{W}_n]_{ij} = \mathbf{1}_{\{d_{ij} \leq d^*\}}$

$$=>$$
 Do not forget:  $[W_n]_{ii} = 0$  for all  $i = 1, ..., n <=$ 



## Specific Overview for this Lecture

## Spatial econometrics: the Spatial Autoregressive (SAR) Model

- a Modeling Spatial Data
- **b** The spatial weight matrix
- c Estimation
- d On normalization

## 5 Assignment



## **Estimating the SAR Parameters**

# 





## Estimation by OLS? Yes or no?

Recall the SAR model:  $\textbf{y}_n = \lambda \textbf{W}_n \textbf{y}_n + \textbf{X}_n \boldsymbol{\beta} + \boldsymbol{\varepsilon}_n$ 

**1** Define 
$$\mathbf{X}_{n}^{*} = \begin{bmatrix} \mathbf{W}_{n}\mathbf{y}_{n} & \mathbf{X}_{n} \end{bmatrix}$$
 and  $\boldsymbol{\beta}^{*} = \begin{bmatrix} \lambda \\ \boldsymbol{\beta} \end{bmatrix}$   
**2** In the new notation,  $\mathbf{y}_{n} = \mathbf{X}_{n}^{*}\boldsymbol{\beta}^{*} + \boldsymbol{\varepsilon}_{n}$ 

Question: Can we estimate the unknown parameters by OLS, i.e.

$$\begin{bmatrix} \widehat{\lambda} \\ \widehat{\beta} \end{bmatrix} = \widehat{\beta}^* = (\boldsymbol{X}_n^{*\prime} \boldsymbol{X}_n^*)^{-1} \boldsymbol{X}_n^{*\prime} \boldsymbol{y}_n?$$



## Maximum Likelihood of the SAR Model (1)

$$oldsymbol{y}_n = \lambda oldsymbol{W}_n oldsymbol{y}_n + oldsymbol{X}_noldsymbol{eta} + oldsymbol{arepsilon}_n$$

Many results originate from the seminal paper is Lee (2004):

- >1000 citations
- Quasi-maximum likelihood assuming  $\boldsymbol{\varepsilon}_n \sim N(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n)$
- Detailed analysis of the asymptotic properties of the QMLE
- We will explore a subset of Lee's (2004) results



## Deriving the Log-likelihood (Assignment 1)

1. Define  $S_n(\lambda) = I_n - \lambda W_n$  and assume that  $S_n^{-1}(\lambda)$  exists. Prove that the loglikelihood under  $\varepsilon_n \sim N(\mathbf{0}, \sigma^2 I_n)$  is equal to

$$\log L_n(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) + \log\left(\det(\boldsymbol{S}_n(\lambda))\right) \\ - \frac{1}{2\sigma^2} \left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right)' \left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right),$$

where  $\boldsymbol{\theta} = (\lambda, \boldsymbol{\beta}', \sigma^2)'$ .

Steps:

**1** Solve for  $y_n$ 

- 2 Use  $\varepsilon_n \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$  to determine distribution of  $\mathbf{y}_n$
- 3 The distribution provides the log-likelihood



## A Closer Look at the Log-Likelihood (1)

$$\log L_n(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) + \log\left(\det(\boldsymbol{S}_n(\lambda))\right) \\ - \frac{1}{2\sigma^2} \left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right)' \left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right)$$

Question: How would you maximize this log-likelihood?



## A Closer Look at the Log-Likelihood (2)

$$\log L_n(\boldsymbol{\theta}) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) + \log\left(\det(\boldsymbol{S}_n(\lambda))\right) \\ - \frac{1}{2\sigma^2} \left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right)' \left(\boldsymbol{S}_n(\lambda)\boldsymbol{y}_n - \boldsymbol{X}_n\boldsymbol{\beta}\right)$$

Observations:

- log  $L_n(\theta)$  is quadratic in  $\beta$
- $\blacksquare$  The dependence on  $\sigma^2$  mimics the "traditional" Gaussian MLE
- The spatial autoregressive parameter enters nonlinearly
- => Concentrate the log-likelihood w.r.t. both  $\beta$  and  $\sigma^2$  <=



ERASMUS SCHOOL OF ECONOMICS

## Vector Differentiation (recap)

Let  $\boldsymbol{\beta} = (\beta_1, \dots, \beta_k)' \in \mathbb{R}^k$  and  $f : \mathbb{R}^k \to \mathbb{R}$ , then

$$\frac{\partial f(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \begin{bmatrix} \frac{\partial f(\boldsymbol{\beta})}{\partial \beta_1} \\ \vdots \\ \frac{\partial f(\boldsymbol{\beta})}{\partial \beta_k} \end{bmatrix} \in \mathbb{R}^k$$

- A vector derivative is often called the gradient
- The notation  $\nabla f(\beta)$  is also used
- Proofs work "element-wise" (examples on next slide)



Some Vector Derivatives (recap)<sup>1</sup>

• For 
$$\mathbf{x} \in \mathbb{R}^{k}$$
,  $\boxed{\frac{\partial}{\partial \beta} \beta' \mathbf{x} = \mathbf{x}}$ , because  
 $\begin{bmatrix} \frac{\partial}{\partial \beta} \beta' \mathbf{x} \end{bmatrix}_{\ell} = \frac{\partial}{\partial \beta_{\ell}} \sum_{i=1}^{k} \beta_{i} x_{i} = \sum_{i=1}^{k} \frac{\partial \beta_{i}}{\partial \beta_{\ell}} x_{i} = \sum_{i=1}^{k} \delta_{i\ell} x_{i} = x_{\ell} = [\mathbf{x}]_{\ell}$   
• For  $\mathbf{A} \in \mathbb{R}^{k \times k}$ ,  $\boxed{\frac{\partial}{\partial \beta} \beta' \mathbf{A} \beta} = (\mathbf{A} + \mathbf{A}') \beta$ , because  
 $\begin{bmatrix} \frac{\partial}{\partial \beta} \beta' \mathbf{A} \beta \end{bmatrix}_{\ell} = \frac{\partial}{\partial \beta_{\ell}} \sum_{i=1}^{k} \sum_{j=1}^{k} \beta_{i} A_{ij} \beta_{j} = \sum_{i=1}^{k} \sum_{j=1}^{k} \left( \frac{\partial \beta_{i}}{\partial \beta_{\ell}} A_{ij} \beta_{j} + \beta_{i} A_{ij} \frac{\partial \beta_{j}}{\partial \beta_{\ell}} \right)$   
 $= \sum_{i=1}^{k} \sum_{j=1}^{k} (\delta_{i\ell} A_{ij} \beta_{j} + \beta_{i} A_{ij} \delta_{j\ell}) = \sum_{j=1}^{k} A_{\ell j} \beta_{j} + \sum_{i=1}^{k} A_{i\ell} \beta_{i}$   
 $= [(\mathbf{A} + \mathbf{A}')\beta]_{\ell}$ 

<sup>1</sup>Note: The Kronecker delta  $\delta_{ij}$  equals 1 if i = j, and 0 if  $i \neq j$ .



## Concentrating the Log-likelihood w.r.t. $\beta$

Using the results from the previous slide, we find

$$\begin{split} \frac{\partial}{\partial \boldsymbol{\beta}} \log L_n(\boldsymbol{\theta}) &= -\frac{1}{2\sigma^2} \frac{\partial}{\partial \boldsymbol{\beta}} \Big( \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big)' \Big( \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n - \boldsymbol{X}_n \boldsymbol{\beta} \Big) \\ &= -\frac{1}{2\sigma^2} \frac{\partial}{\partial \boldsymbol{\beta}} \Big( \boldsymbol{\beta}' \boldsymbol{X}_n' \boldsymbol{X}_n \boldsymbol{\beta} - 2\boldsymbol{\beta}' \boldsymbol{X}_n' \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n \Big) \\ &= -\frac{1}{\sigma^2} \Big( \boldsymbol{X}_n' \boldsymbol{X}_n \boldsymbol{\beta} - \boldsymbol{X}_n' \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n \Big) \end{split}$$

Given  $\lambda$ , the optimal choice for  $\beta$  is

$$\widehat{\boldsymbol{\beta}}(\lambda) = \left(\boldsymbol{X}_n^{\prime} \boldsymbol{X}_n\right)^{-1} \boldsymbol{X}_n^{\prime} \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n$$



# Concentrating the Log-likelihood w.r.t. $\sigma^2$ (Assignment 2)

2. Concentrate the log-likelihood with respect to  $\sigma^2$  and show that

$$\widehat{\sigma}^2(\lambda) = rac{1}{n} oldsymbol{y}_n' oldsymbol{S}_n'(\lambda) oldsymbol{M}_X oldsymbol{S}_n(\lambda) oldsymbol{y}_n,$$

where 
$$\boldsymbol{M}_{X} = \boldsymbol{I}_{n} - \boldsymbol{X}_{n} (\boldsymbol{X}_{n}^{\prime} \boldsymbol{X}_{n})^{-1} \boldsymbol{X}_{n}^{\prime}$$
.

Steps:

**1** Set 
$$\frac{\partial}{\partial \sigma^2} \log L_n(\theta)$$
 equal to zero

**2** Insert the expression for  $\widehat{\beta}(\lambda)$ 



## It's all about the $\lambda$ ... (Assignment 3)

- $\blacksquare$  We have optimal choices for  ${\cal B}$  and  $\sigma^2$  given the value for  $\lambda$
- It remains to compute the concentrated log-likelihood

3. Derive the concentrated log-likelihood

$$\log L_n(\lambda) = -\frac{n}{2} \Big( \log(2\pi) + 1 \Big) - \frac{n}{2} \log\left(\widehat{\sigma}^2(\lambda)\right) + \log\left(\det(\mathbf{S}_n(\lambda))\right).$$



## The Estimation Approach (1)

A list of all the results so far:

 $\log L_n(\lambda) = -\frac{n}{2} \Big( \log(2\pi) + 1 \Big) - \frac{n}{2} \log \big( \widehat{\sigma}^2(\lambda) \big) + \log \big( \det(\boldsymbol{S}_n(\lambda)) \big)$ 

$$\widehat{\boldsymbol{\beta}}(\lambda) = (\boldsymbol{X}_n' \boldsymbol{X}_n)^{-1} \boldsymbol{X}_n' \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n$$
$$\widehat{\sigma}^2(\lambda) = \frac{1}{n} \boldsymbol{y}_n' \boldsymbol{S}_n'(\lambda) \boldsymbol{M}_X \boldsymbol{S}_n(\lambda) \boldsymbol{y}_n$$

**Question 1**: How to interpret the formulae for  $\widehat{\beta}(\lambda)$  and  $\widehat{\sigma}^2(\lambda)$ ?

**Question 2**: Given this interpretation, what is an intuitive implementation?



## The Estimation Approach (2)

1 Maximize the concentrated log-likelihood

$$\log L_n(\lambda) = -\frac{n}{2} \Big( \log(2\pi) + 1 \Big) - \frac{n}{2} \log \left( \widehat{\sigma}^2(\lambda) \right) + \log \left( \det(\boldsymbol{S}_n(\lambda)) \right)$$

to determine the MLE  $\widehat{\lambda}$ 

 "Easy" univariate optimization problem (grid search, Newton-Rhapson, etc.) due to likelihood concentration



## Specific Overview for this Lecture

## Spatial econometrics: the Spatial Autoregressive (SAR) Model

- a Modeling Spatial Data
- **b** The spatial weight matrix
- c Estimation
- d On normalization

## **5** Assignment







## Which $\lambda$ -values?

Two remaining (and related) issues

- $\longrightarrow \lambda W_n = \left(\frac{\lambda}{C}\right) (C W_n)$  for any constant C
- $\longrightarrow$  We assumed  $\boldsymbol{S}_n(\lambda) = \boldsymbol{I}_n \lambda \boldsymbol{W}_n$  to be invertible
- These issues are important because they determine the parameter space over which to optimize the concentrated log-likelihood
- Normalize the spatial weight matrix  $W_n$ . Two normalization schemes are popular:
  - 1 Spectral-normalization
  - 2 Row-normalization



## Focusing on Symmetric Weight Matrices

■ For simplicity, assume  $W_n = W'_n$  (restrictive in theory/practice?)

■ Recall eigenvalue decomposition  $W_n = V_n \Lambda_n V'_n$ ■  $V_n \in \mathbb{R}^{n \times n}$  stacks eigenvectors in columns ■  $\Lambda_n = \text{diag}(\kappa_1(W_n), \dots, \kappa_n(W_n)) \in \mathbb{R}^{n \times n}$  where  $\rightarrow \kappa_i(W_n)$  denotes the *i*<sup>th</sup> eigenvalue of  $W_n$   $\rightarrow \kappa_i(W_n)$  is a real  $\rightarrow \kappa_1(W_n) \ge \kappa_2(W_n) \ge \dots \ge \kappa_n(W_n)$ ■  $V'_n V_n = V_n V'_n = I_n$ 

The key insight is

$$\boldsymbol{S}_{n}(\lambda) = \boldsymbol{I}_{n} - \lambda \boldsymbol{W}_{n} = \boldsymbol{V}_{n} \boldsymbol{V}_{n}' - \lambda \boldsymbol{V}_{n} \boldsymbol{\Lambda}_{n} \boldsymbol{V}_{n}' = \boldsymbol{V}_{n} \left( \boldsymbol{I}_{n} - \lambda \boldsymbol{\Lambda}_{n} \right) \boldsymbol{V}_{n}'$$

 $=> S_n(\lambda)$  has eigenvalues  $1 - \lambda \kappa_i(W_n)$  (i = 1, ..., n) <=



## Spectral-normalization

**S**<sub>n</sub>( $\lambda$ ) is invertible if all its eigenvalues are unequal to zero

$$1 - \lambda \kappa_i(\boldsymbol{W}_n) \neq 0$$
 for all  $i = 1, \dots, n.$  (2)

- For spectral-normalization, condition (2) is satisfied using
  - **1** Renormalize  $W_n$  to  $W_n^* = W_n / \max_{i=1,...,n} |\kappa_i(W_n)|$
  - 2 Ensure that the maximum eigenvalue of  $W_n^*$  is equal to one<sup>2</sup>
  - 3 Optimize concentrated log-likelihood over  $\lambda < 1$ , then

$$\lambda k_1(\boldsymbol{W}_n^*) < 1 \implies \boldsymbol{S}_n(\lambda) ext{ invertible }$$

<sup>2</sup>This is either trivially satisfied or requires multiplying  $W_n^*$  by -1



## **Row-normalization**

- *W<sub>n</sub>* often has non-negative elements
- For row-normalization, condition (2) is satisfied using
  - **I** Renormalize  $W_n$  using  $[W_n^*]_{ij} = [W_n]_{ij} / \sum_{j=1}^n [W_n]_{ij}$ . In words: all row-sums of  $W_n^*$  are made equal to one
  - 2 Optimize concentrated log-likelihood over  $\lambda < 1$ , then

$$\lambda k_1(\boldsymbol{W}_n^*) < 1 \implies \boldsymbol{S}_n(\lambda) \text{ invertible}$$

- This works because  $W_n^*$  is now a row-stochastic matrix
  - $\longrightarrow$   $W_n^*$  has an eigenvalue equal to 1 (why?)
  - $\longrightarrow$  No eigenvalues of  $\boldsymbol{W}_n^*$  can exceed 1 because all elements of  $\boldsymbol{W}_n^* \boldsymbol{x}$  are convex combinations of  $x_1, \ldots, x_n$



## The Estimation Approach (3)

## **1** Select $W_n$ and normalize

2 Maximize the concentrated log-likelihood

$$\log L_n(\lambda) = -\frac{n}{2} \Big( \log(2\pi) + 1 \Big) - \frac{n}{2} \log \big( \widehat{\sigma}^2(\lambda) \big) + \log \big( \det(\boldsymbol{S}_n(\lambda)) \big)$$

to determine the MLE  $\widehat{\lambda}$ 

- "Easy" univariate optimization problem (grid search, Newton-Rhapson, etc.) due to likelihood concentration
- Normalization provides admissible values for

3 Consider 
$$oldsymbol{y}_n - \widehat{\lambda} oldsymbol{W}_n oldsymbol{y}_n = oldsymbol{X}_n oldsymbol{eta} + oldsymbol{arepsilon}_n$$

- Newly computed dependent variable  $y_n \widehat{\lambda} W_n y_n$
- OLS estimator equal  $\widehat{\beta}(\widehat{\lambda})$
- Average SSR is  $\hat{\sigma}^2(\hat{\lambda})$



## Extra 1: Asymptotic Results in Lee (2004)

- $\blacksquare$  The objective function is nonlinear  $\implies$  no finite sample results
- Lee (2004) provides explicit conditions guaranteeing consistency of the MLE
  - Normally distributed errors are not needed... assuming  $\varepsilon_n \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$  is just a convenient way of finding an estimator (compare OLS)
- Asymptotic normality also holds (albeit under more restrictive conditions) and allows for inference



## Extra 2: Other Estimation Approaches

- IV estimation in Kelejian and Prucha (1998)
- Lin and Lee (2010) investigate GMM

Remarks:

- IV and GMM allow for heteroskedasticity
  - Instruments are readily available (why?)
- ML is most efficient ("smallest" asymptotic covariance matrix) under homoskedasticity



## Specific Overview for this Lecture

## Spatial econometrics: the Spatial Autoregressive (SAR) Model

- a Modeling Spatial Data
- **b** The spatial weight matrix
- c Estimation
- d On normalization
- **5** Assignment  $\implies$  You have seen the three exercises!



## References

Kelejian and Prucha (1998), A Generalized Spatial Two-stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, The Journal of Real Estate Finance and Economics

Lee (2004), Asymptotic Distributions of Quasi-maximum Likelihood Estimators for Spatial Autoregressive Models, Econometrica

Lin and Lee (2010), *GMM Estimation of Spatial Autoregressive Models* with Unknown Heteroskedasticity, Journal of Econometrics

