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Exercise 1
The joint pdf of X1, . . . , Xn is f(x1, . . . , xn;µ) =

∏n
i=1

(
e−µµxi

xi!

)
= e−nµµ

∑n
i=1 xi∏n

i=1 xi!
. Moreover,

since X1, . . . , Xn
i.i.d.∼ POI(µ) we have S =

∑n
i=1Xi ∼ POI(nµ). The pdf of S is thus f(s;µ) =

e−nµnsµs

s! . The conditional pdf

fX|s =


f(x1,...,xn;µ)

f(s;µ) =
e−nµµ

∑n
i=1 xi∏n

i=1
xi!

e−nµnsµs
s!

= s!
ns
∏n
i=1 xi!

if
∑n
i=1 xi = s

0 otherwise,

does not depend on µ, hence S =
∑n
i=1Xi is sufficient for µ.

Exercise 6
The joint pdf of X1, . . . , Xn is

f(x1, . . . , xn; p) =

n∏
i=1

(
mi

xi

)
pxi(1− p)mi−xi =

[
n∏
i=1

(
mi

xi

)]
p
∑n
i=1 xi

(1− p)
∑n
i=1mi

(1− p)
∑n
i=1 xi

= ps
(1− p)

∑n
i=1mi

(1− p)s︸ ︷︷ ︸
=g(s;p)

[
n∏
i=1

(
mi

xi

)]
︸ ︷︷ ︸
=h(x1,...,xn)

,

where s =
∑n
i=1 xi. By the factorization criterion, S =

∑n
i=1Xi is sufficient for p.

Exercise 11
We will use the factorization criterion to answer both subquestion. Note that the joint pdf of
X1, . . . , Xn is equal to

f(x1, . . . , xn; θ1, θ2) =

n∏
i=1

(
1

θ2 − θ1
I(θ1,θ2)(xi)

)
=

1

(θ2 − θ1)n
I(θ1,∞)(x1:n)I(−∞,θ2)(xn:n).

(a) If θ2 is known, then θ1 is the only parameter to consider. We write

f(x1, . . . , xn; θ1) =
1

(θ2 − θ1)n
I(θ1,∞)(s)︸ ︷︷ ︸

=g(s;θ1)

I(−∞,θ2)(xn:n)︸ ︷︷ ︸
=h(x1,...,xn)

with s = x1:n. By the factorization criterion, S = X1:n is sufficient for θ1.
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(b) We now treat both θ1 and θ2 as unknown parameters. The required factorization is now

f(x1, . . . , xn; θ1, θ2) =
1

(θ2 − θ1)n
I(θ1,∞)(s1)I(−∞,θ2)(s2)︸ ︷︷ ︸
=g(s1,s2;θ1,θ2)

× 1︸︷︷︸
=h(x1,...,xn)

.

S1 = X1:n and S2 = Xn:n are jointly sufficient for θ1 and θ2.

Exercise 13
The joint pdf of X1, . . . , Xn can be written as

f(x1, . . . , xn; θ1, θ2) =

n∏
i=1

(
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
xθ1−1
i (1− xi)θ2−1

)

=

(
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)

)n( n∏
i=1

xi

)θ1−1( n∏
i=1

(1− xi)

)θ2−1

=

(
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)

)n
sθ1−1

1 sθ2−1
2︸ ︷︷ ︸

=g(s1,s2;θ1,θ2)

× 1︸︷︷︸
=h(x1,...,xn)

,

where we defined s1 =
∏n
i=1 xi and s2 =

∏n
i=1(1 − xi). According to the factorization crition,

S1 =
∏n
i=1Xi and S2 =

∏n
i=1(1−Xi) are jointly sufficient for θ1 and θ2.

Exercise 19
The pdf depends on k = 1 unknown parameter, namely µ. However, if we expand the square in
the exponential, that is

f(x;µ) =
1√

2π|µ|
e
− (x−µ)2

2µ2 =
1√

2π|µ|
e
− x

2−2µx+µ2

2µ2 =
1√

2π|µ|
e
−
(
x2

2µ2
− xµ+ 1

2

)
=

e−
1
2

√
2π|µ|

e
− x2

2µ2
+ x
µ ,

then we see that the exponential contains two summands of the form qj(µ)tj(x). The N(µ, µ2)
is thus not a member of the REC.

Exercise 20

(a) The pdf can be written as

f(x; p) = px(1− p)1−x = (1− p)
(

p

1− p

)x
= (1− p)ex ln( p

1−p ),

such that it is a member of the REC with c(p) = 1 − p, h(x) = 1, q1(p) = ln
(

p
1−p

)
, and

t1(x) = x. Hence S =
∑n
i=1Xi is a complete sufficient statistic for p.

(b) The pdf can be written as

f(x;µ) =
e−µµx

x!
=

1

x!
e−µex lnµ,

such that it is a member of the REC with c(µ) = e−µ, h(x) = 1
x! , q1(µ) = lnµ and

t1(x) = x. Hence S =
∑n
i=1Xi is a complete sufficient statistic for µ.
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(c) The pdf can be written as

f(x; p) =

(
x− 1

r − 1

)
pr(1− p)x−r =

(
x− 1

r − 1

)(
p

1− p

)r
(1− p)x

=

(
x− 1

r − 1

)(
p

1− p

)r
ex ln(1−p),

such that it is a member of the REC with c(p) =
(

p
1−p

)r
, h(x) =

(
x−1
r−1

)
, q1(p) = ln(1− p),

and t1(x) = x. Hence S =
∑n
i=1Xi is a complete sufficient statistic for p.

(d) The pdf can be written as

f(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 =
1√

2πσ2
e−

x2−2µx+µ2

2σ2 =
1√

2πσ2
e−

x2

2σ2
+µx

σ2
− µ2

2σ2

=
e−

µ2

2σ2

√
2πσ2

e
µ

σ2
x− 1

2σ2
x2

,

such that it is a member of the REC with c(µ, σ2) = 1√
2πσ2

e−
µ2

2σ2 , h(x) = 1, q1(µ, σ2) = µ
σ2 ,

q2(µ, σ2) = − 1
2σ2 , t1(x) = x, and t2(x) = x2. Hence S1 =

∑n
i=1Xi and S2 =

∑n
i=1X

2
i are

jointly complete sufficient statistics for µ and σ2.

(e) The pdf can be written as

f(x; θ) =
1

θ
e−

x
θ =

1

θ
e−

1
θ x,

such that it is a member of the REC with c(θ) = 1
θ , h(x) = 1, q1(θ) = − 1

θ , and t1(x) = x.
Hence S =

∑n
i=1Xi is a complete sufficient statistic for θ.

(f) The pdf can be written as

f(x; θ, κ) =
1

θκΓ(κ)
xκ−1e−

x
θ =

1

θκΓ(κ)
e(κ−1) ln(x)e−

x
θ =

1

θκΓ(κ)
e−

1
θ x+(κ−1) ln(x),

such that it is a member of the REC with c(θ, κ) = 1
θκΓ(κ) , h(x) = 1, q1(θ, κ) = − 1

θ ,

q2(θ, κ) = κ− 1, t1(x) = x, and t2(x) = ln(x). Hence S1 =
∑n
i=1Xi and S2 =

∑n
i=1 ln(Xi)

are jointly complete sufficient statistics for θ and κ.

(g) The pdf can be written as

f(x; θ1, θ2) =
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
xθ1−1(1− x)θ2−1 =

Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
e(θ1−1) ln(x)e(θ2−1) ln(1−x)

=
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
e(θ1−1) ln(x)+(θ2−1) ln(1−x),

such that it is a member of the REC with c(θ1, θ2) = Γ(θ1+θ2)
Γ(θ1)Γ(θ2) , h(x) = 1, q1(θ1, θ2) = θ1−1,

q2(θ1, θ2) = θ2 − 1, t1(x) = ln(x), and t2(x) = ln(1 − x). Hence S1 =
∑n
i=1 ln(Xi) and

S2 =
∑n
i=1 ln(1−Xi) are jointly complete sufficient statistics for θ1 and θ2.

(h) Note that β is considered to be known. The pdf can be written as

f(x; θ) =
β

θβ
xβ−1e−( xθ )

β

=
β

θβ
xβ−1e−

1

θβ
xβ ,
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such that it is a member of the REC with c(θ) = β
θβ

, h(x) = xβ−1, q1(θ) = − 1
θβ

, and

t1(x) = xβ . Hence S =
∑n
i=1X

β
i is a complete sufficient statistic for θ.

Exercise 21
In part (a) and (b) we are asked to find UMVUEs. The approach is as follows. From Exercise
20(a) we know that S =

∑n
i=1Xi is a complete sufficient statistic for p. It is also easy to show

that the MLE for p is equal to p̂ = X̄ = 1
nS. We will therefore make an educated guess for the

estimator. If this proposed estimator is unbiased, then we have immediately found an UMVUE.
If this approach leads to a biased estimator, then we try a transformation to remove the bias.
Also note that S =

∑n
i=1Xi ∼ BIN(n, p) such that E(S) = np and Var(S) = np(1− p).

(a) We try the estimator p̂(1− p̂) = S
n

(
1− S

n

)
. Its expectation is

E
(
p̂(1− p̂)

)
= E

(
S

n

(
1− S

n

))
=

E(S)

n
− E(S2)

n2
= p− Var(S) + (E(S))2

n2

= p− np(1− p) + (np)2

n2
=
np− p(1− p)− np2

n
=
np(1− p)− p(1− p)

n

=
n− 1

n
p(1− p).

Hence T = n
n−1

[
S
n

(
1− S

n

)]
= S

n−1

(
1− S

n

)
is unbiased for p(1− p) such that it is also an

UMVUE.

(b) Note that p2 = p − p(1 − p) is a linear combination of the terms p and p(1 − p). The
unbiased estimators for both parts are S

n and S
n−1

(
1− S

n

)
(see previous part), respectively.

We will therefore try S
n −

S
n−1

(
1− S

n

)
. Linear of the expectation gives

E
(
S

n
− S

n− 1

(
1− S

n

))
= E

(
S

n

)
− E

(
S

n− 1

(
1− S

n

))
= p− p(1− p) = p2.

Hence T = S
n −

S
n−1 (1− S

n ) = S(S−1)
n(n−1) is unbiased for p2 such that it is also an UMVUE.

Exercise 22
We have seen in Exercise 20(b), that S =

∑n
i=1Xi is a complete sufficient statistic for µ.

According to Lehmann-Scheffé, Theorem 10.4.1 on page 346 of B&E, we can find an UMVUE if
we can find an unbiased estimator for e−µ that is a function of S only. In exercise 33(g) we have

seen that E
(
(n−1
n )S

)
= e−µ.

(
n−1
n

)∑n
i=1Xi is thus an UMVUE for e−µ.

Exercise 25
The pdf can be written as

f(x; θ) = θxθ−1 = θe(θ−1) ln(x) = θe(1−θ)(− ln x),

such that it is a member of the REC with c(θ) = θ, h(x) = 1, q1(θ) = 1− θ, and t1(x) = − ln(x).
Hence S = −

∑n
i=1 ln(Xi) is a complete sufficient statistic for θ.

(a) Using the hint we find E(S) =
∑n
i=1 E

(
− ln(Xi)

)
= n

θ . We conclude that − 1
n

∑n
i=1 ln(Xi)

is an unbiased estimator for 1
θ and only a function of S. According to Lehmann-Scheffé,

Theorem 10.4.1 on page 346 of B&E, this is also an UMVUE.
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(b) Having found S
n = − 1

n

∑n
i=1 ln(Xi) as an UMVUE for 1

θ , we might try n
S as an UMVUE

for θ. This estimator is still a function of S only but it is no longer clear that it is unbiased.
We have to compute E

(
n
S

)
. If X has the pdf f(x; θ), then Y = − ln(X) has the pdf

fY (y; θ) = fX(e−y; θ) | − e−y| = θ(e−y)(θ−1)e−y = θe−θy, y > 0.

From Table B.2 we can see that Y ∼ GAM
(

1
θ , 1
)
. Using the properties of MGFs we also

find S =
∑n
i=1 Yi = −

∑n
i=1 ln(Xi) ∼ GAM

(
1
θ , n
)
. The pdf of S is thus

fS(s) =
1(

1
θ

)n
Γ(n)

sn−1e−θs, s > 0,

and we can compute

E
(n
S

)
=

∫ ∞
0

n

s

1(
1
θ

)n
Γ(n)

sn−1e−θsds = n

∫ ∞
0

(
Γ(n− 1)

Γ(n− 1)

)
1(

1
θ

)n
Γ(n)

s(n−1)−1e−θsds

= nθ
Γ(n− 1)

Γ(n)

∫ ∞
0

1(
1
θ

)n−1
Γ(n− 1)

s(n−1)−1e−θs︸ ︷︷ ︸
pdf of GAM( 1

θ ,n−1)

ds

= nθ
Γ(n− 1)

Γ(n)
=

n

n− 1
θ,

where we have used the fact that the pdf of the GAM( 1
θ , n− 1) integrated over its support

should be equal to 1. This calculations suggest that

θ̂ =
n− 1

n

n

S
=
n− 1

S
= − n− 1∑n

i=1 ln(Xi)
,

is an estimator for θ which is (1) unbiased, and (2) a function of S only. According to
Lehmann-Scheffé, Theorem 10.4.1 on page 346 of B&E, this is also an UMVUE.

Note 1 : It also possible to solve the integral directly.

Note 2 : One could have seen immediately from Jensen’s inequality that n
S will give a biased

estimator for θ. It was thus clear from the start that a correction was necessary.

Exercise 31

(a) The likelihood and log-likelihood are L(θ) =
∏n
i=1 f(xi; θ) = θn (

∏n
i=1(1 + xi))

−(1+θ)
and

lnL(θ) = n ln(θ)− (1 + θ)
∑n
i=1 ln(1 + xi), respectively. The first and second derivative of

the log-likelihood are:

d

dθ
lnL(θ) =

n

θ
−

n∑
i=1

ln(1 + xi)

d2

dθ2
lnL(θ) = − n

θ2
< 0, for all θ.

Because the second derivative is always negative, we find the ML estimator as follows:

n

θ̂
−

n∑
i=1

ln(1 +Xi) = 0 ⇒ θ̂ =
n∑n

i=1 ln(1 +Xi)
.
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(b) The pdf can be written as

f(x; θ) = θ(1 + x)−(1+θ) = θe−(1+θ) ln(1+x),

such that it is a member of the REC with c(θ) = θ, h(x) = 1, q1(θ) = −(1 + θ), and
t1(x) = ln(1 + x). Hence S =

∑n
i=1 ln(1 +Xi) is a complete sufficient statistic for θ.

(c) For the numerator of the CRLB, τ(θ) = 1
θ yields τ ′(θ) = − 1

θ2 . The following results are
helpful to find the denominator:

∂2

∂θ2
ln f(x; θ) = − 1

θ2
,

E
(
∂2

∂θ2
ln f(X; θ)

)
= E

(
− 1

θ2

)
= − 1

θ2
.

Overall, the CRLB is
[τ ′(θ)]2

−nE
(
∂2

∂θ2 , ln f(X; θ)
) =

1
θ4

n
θ2

=
1

nθ2
.

(d) It seems intuitive to use 1
θ̂

= 1
n

∑n
i=1 ln(1 + Xi) to estimate θ. This estimator is already

a function of S but we do not know yet whether it is biased or not. If X has the pdf
f(x; θ) = θ(1 + x)−(1+θ), then the pdf of random variable Y = ln(1 +X) is given by

fY (y; θ) = fX(ey − 1; θ) |ey| = θ(ey)−(1+θ)ey = θe−θy, y > 0.

Hence Y ∼ GAM( 1
θ , 1) and in turn S =

∑n
i=1 Yi =

∑n
i=1 ln(1 + Xi) ∼ GAM( 1

θ , n) (see

Example 6.4.6 in the book). Since E(S) = n
θ , the estimator T = S

n = 1
n

∑n
i=1 ln(1 +Xi) is

unbiased for τ(θ) = 1
θ such that it is also an UMVUE.

(e) The CRLB for θ is
1

−nE
(
∂2

∂θ2 ln f(X; θ)
) =

1
n
θ2

=
θ2

n

such that the asymptotic distribution of the MLE θ̂n is

θ̂n − θ√
CRLB

=
θ̂n − θ
θ/
√
n

d−→ Z ∼ N(0, 1).

The CRLB for 1/θ was derived in part (c). The asymptotic distribution of the MLE

τ(θ̂n) = 1
θ̂n

of τ(θ) = 1
θ is thus

1
θ̂n
− 1

θ√
CRLB

=

1
θ̂n
− 1

θ

1√
nθ

d−→ Z ∼ N(0, 1).

(f) This exercise is similar to Exercise 25(b). Given that T = S
n = 1

n

∑n
i=1 ln(1 + Xi) was an

UMVUE for 1/θ, it seems reasonable to figure out whether n/S can be an UMVUE for
θ. It is clearly a function of the complete sufficient statistic so it only remains to check
whether it is unbiased. Because the pdf of S is given by

fS(s) =
1(

1
θ

)n
Γ(n)

sn−1e
− s

1
θ =

1(
1
θ

)n
Γ(n)

sn−1e−θs s > 0,
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we find

E
(n
S

)
=

∫ ∞
0

n

s

1(
1
θ

)n
Γ(n)

sn−1e−θsds = n

∫ ∞
0

(
Γ(n− 1)

Γ(n− 1)

)
1(

1
θ

)n
Γ(n)

s(n−1)−1e−θsds

= nθ
Γ(n− 1)

Γ(n)

∫ ∞
0

1(
1
θ

)n−1
Γ(n− 1)

s(n−1)−1e−θs︸ ︷︷ ︸
pdf of GAM( 1

θ ,n−1)

ds

= nθ
Γ(n− 1)

Γ(n)
=

n

n− 1
θ.

An UMVUE for θ is thus n−1
S = n−1∑n

i=1 ln(1+Xi)
.
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