Solutions to Selected Exercises from Chapter 11 Bain \& Engelhardt - Second Edition

Andreas Alfons and Hanno Reuvers
Erasmus School of Economics, Erasmus Universiteit Rotterdam

Exercise 1

If $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}\left(\mu, \sigma^{2}\right)$, then $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$. This implies that $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$ is a pivotal quantity. This pivotal quantity is used in parts (a)-(c).
(a) We have

$$
\mathbb{P}\left(-z_{1-\frac{\alpha}{2}}<\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}<z_{1-\frac{\alpha}{2}}\right)=1-\alpha
$$

and thus also

$$
\mathbb{P}\left(\bar{X}-z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha .
$$

With $z_{1-\frac{\alpha}{2}}=z_{0.95}=1.645$ (see Table 3), a 90% confidence interval for μ is

$$
\left(\bar{x}-z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)=\left(19.3-1.645 \frac{3}{\sqrt{16}}, 19.3+1.645 \frac{3}{\sqrt{16}}\right)=(18.067,20.534) .
$$

(b) By similar steps as in part (a), we have

$$
\begin{aligned}
\mathbb{P}\left(\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}<z_{1-\alpha}\right) & =1-\alpha, \quad \mathbb{P}\left(-z_{1-\alpha}<\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}\right)=1-\alpha, \\
\mathbb{P}\left(\bar{X}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}<\mu\right) & =1-\alpha, \quad \mathbb{P}\left(\mu<\bar{X}+z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha .
\end{aligned}
$$

With $z_{1-\alpha}=z_{0.90}=1.282$ (see Table 3), one-sided 90% confidence limits for μ are

$$
\begin{aligned}
& \ell\left(x_{1}, \ldots, x_{n}\right)=\bar{x}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}=19.3-1.282 \frac{3}{\sqrt{16}}=18.339 \\
& u\left(x_{1}, \ldots, x_{n}\right)=\bar{x}+z_{1-\alpha} \frac{\sigma}{\sqrt{n}}=19.3+1.282 \frac{3}{\sqrt{16}}=20.262
\end{aligned}
$$

(c) The length of the confidence interval is $2 z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$. We need

$$
2 z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \leq \lambda \quad \Rightarrow \quad \frac{1}{\sqrt{n}} \leq \frac{\lambda}{2 z_{1-\frac{\alpha}{2}} \sigma} \quad \Rightarrow \quad n \geq\left(\frac{2 z_{1-\frac{\alpha}{2}} \sigma}{\lambda}\right)^{2} .
$$

For the given numerical values, this evaluates to a required sample size of $n \geq\left(\frac{2 \cdot 1.645 \cdot 3}{2}\right)^{2}=$ 24.354. We round to $n=25$.
(d) The pivotal quantity $\frac{\bar{X}-\mu}{s / \sqrt{n}} \sim t(n-1)$ yields

$$
\mathbb{P}\left(-t_{1-\frac{\alpha}{2}}<\frac{\bar{X}-\mu}{s / \sqrt{n}}<t_{1-\frac{\alpha}{2}}\right)=1-\alpha
$$

and

$$
\mathbb{P}\left(\bar{X}-t_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}<\mu<\bar{X}+t_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right)=1-\alpha
$$

With $t_{1-\frac{\alpha}{2}}(n-1)=t_{0.95}(15)=1.753$ (see Table 6), a 90% confidence interval for μ is

$$
\begin{aligned}
\left(\bar{x}-t_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}, \bar{x}+t_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}\right) & =\left(19.3-1.753 \sqrt{\frac{10.24}{16}}, 19.3+1.753 \sqrt{\frac{10.24}{16}}\right) \\
& =(17.898,20.702)
\end{aligned}
$$

(e) The pivotal quantity $\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)$ yields

$$
\mathbb{P}\left(\chi_{\frac{\alpha}{2}}^{2}<\frac{(n-1) S^{2}}{\sigma^{2}}<\chi_{1-\frac{\alpha}{2}}^{2}\right)=1-\alpha
$$

and

$$
\mathbb{P}\left(\frac{(n-1) S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}}<\sigma^{2}<\frac{(n-1) S^{2}}{\chi_{\frac{\alpha}{2}}^{2}}\right)=1-\alpha
$$

With $\chi_{\frac{\alpha}{2}}^{2}(n-1)=\chi_{0.005}^{2}(15)=4.60$ and $\chi_{1-\frac{\alpha}{2}}^{2}(n-1)=\chi_{0.995}^{2}(15)=32.80$ (see Table 4$)$, a 99% confidence interval for σ^{2} is obtained as

$$
\left(\frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}}, \frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2}}^{2}}\right)=\left(\frac{15 \cdot 10.24}{32.80}, \frac{15 \cdot 10.24}{4.60}\right)=(4.683,33.391)
$$

Exercise 3

(a) The pivotal quantity $\frac{2 n \bar{X}}{\theta} \sim \chi^{2}(2 n)$ yields $\mathbb{P}\left(\frac{2 n \bar{X}}{\theta}<\chi_{\gamma}^{2}\right)=\gamma$ and $\mathbb{P}\left(\frac{2 n \bar{X}}{\chi_{\gamma}^{2}}<\theta\right)=\gamma$. With $\chi_{\gamma}^{2}(2 n)=\chi_{0.95}^{2}(100)=124.34$ (see Table 4), a one-sided lower 95% confidence limit for θ is obtained as

$$
\mathcal{\ell}\left(x_{1}, \ldots, x_{n}\right)=\frac{2 n \bar{x}}{\chi_{\gamma}^{2}}=\frac{2 \cdot 50 \cdot 17.9}{124.34}=14.396
$$

(b) Note that $e^{-t / \theta}$ is a monotone increasing transformation of θ. This implies that a lower confidence limit for θ can be transformed into a lower confidence limit for $e^{-t / \theta}$. The details are as follows:

$$
\begin{aligned}
0.95 & =\mathbb{P}\left(\ell\left(X_{1}, \ldots, X_{n}\right)<e^{-\frac{t}{\theta}}\right)=\mathbb{P}\left(\ln \mathcal{\ell}\left(X_{1}, \ldots, X_{n}\right)<-\frac{t}{\theta}\right) \\
& =\mathbb{P}\left(-\frac{t}{\ln \ell\left(X_{1}, \ldots, X_{n}\right)}<\theta\right)
\end{aligned}
$$

In part (a) we have found the lower bound of 14.396, hence $-\frac{t}{\ln \ell\left(x_{1}, \ldots, x_{n}\right)}=14.396$. We find $\mathcal{C}\left(x_{1}, \ldots, x_{n}\right)=e^{-\frac{t}{14.396}}$ as a one-sided lower 95% confidence limit for $\mathbb{P}(X>t)=e^{-\frac{t}{\theta}}$.

Note: The exercise states 'where t is an arbitrary known value'. Note however that the choice $t=0$ should be excluded.

Exercise 5

(a) The pdf of the $\operatorname{EXP}(1, \eta)$ distribution is $f(x ; \eta)=e^{-(x-\eta)}$ and we can integrate to find the cdf $F(x ; \eta)=\int_{\eta}^{x} e^{-(t-\eta)} d t=1-e^{-(x-\eta)}$ for $x>\eta$ (and zero otherwise). The pdf for the minimum is thus

$$
f_{X_{1: n}}(x ; \eta)=n[1-F(x ; \eta)]^{n-1} f(x ; \eta)=n\left[e^{-(x-\eta)}\right]^{n-1} e^{-(x-\eta)}=n e^{-n(x-\eta)}, \quad x>\eta
$$

It is clear from the form of this pdf that η is a location parameter. The transformation $Q=X_{1: n}-\eta$ (with inverse transformation $X_{1: n}=Q+\eta$) yields

$$
f_{Q}(x)=f_{X_{1: n}-\eta}(x ; \eta)=n e^{-n x}, \quad x>0 .
$$

We see that $Q \sim \operatorname{EXP}(1 / n)$. This distribution does not depend on η and Q is thus a pivotal quantity.
(b) An $100 \gamma \%$ equal tailed confidence interval is given by $\mathbb{P}\left(q_{1}<Q<q_{2}\right)=\gamma$ where the quantiles q_{1} and q_{2} should satify $\mathbb{P}\left(Q \leq q_{1}\right)=F_{Q}\left(q_{1}\right)=\frac{1-\gamma}{2}$ and $\mathbb{P}\left(Q \geq q_{2}\right)=1-F_{Q}\left(q_{2}\right)=$ $\frac{1-\gamma}{2}$. An explicit calculation of the cdf, $F_{Q}(x)=\int_{0}^{x} n e^{-n t} d t=1-e^{-n x}$, leads to

$$
\begin{aligned}
1-e^{-n q_{1}} & =\frac{1-\gamma}{2} & e^{-n q_{2}} & =\frac{1-\gamma}{2} \\
q_{1} & =-\frac{1}{n} \ln \left(\frac{1+\gamma}{2}\right) & q_{2} & =-\frac{1}{n} \ln \left(\frac{1-\gamma}{2}\right)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\mathbb{P}\left(-\frac{1}{n} \ln \left(\frac{1+\gamma}{2}\right)<X_{1: n}-\eta<-\frac{1}{n} \ln \left(\frac{1-\gamma}{2}\right)\right) & =\gamma \\
\mathbb{P}\left(X_{1: n}+\frac{1}{n} \ln \left(\frac{1-\gamma}{2}\right)<\eta<X_{1: n}+\frac{1}{n} \ln \left(\frac{1+\gamma}{2}\right)\right) & =\gamma
\end{aligned}
$$

such that

$$
\left(x_{1: n}+\frac{1}{n} \ln \left(\frac{1-\gamma}{2}\right), x_{1: n}+\frac{1}{n} \ln \left(\frac{1+\gamma}{2}\right)\right)
$$

is a $100 \gamma \%$ equal tailed confidence interval for η.
(c) It should be understood from the exercise (although this is not very clear) that the mileages are $\operatorname{EXP}(\theta, \eta)$ distributed. If $X \sim \operatorname{EXP}(\theta, \eta)$, then $Y=X / \theta(\theta>0)$ has the pdf

$$
f_{Y}(y)=f_{X}(\theta y ; \theta, \eta)|\theta|=\frac{1}{\theta} e^{-\frac{(\theta y-\eta)}{\theta}} \theta=e^{-\left(y-\frac{\eta}{\theta}\right)}, \quad y>\frac{\eta}{\theta}
$$

This is the pdf of an $\operatorname{EXP}\left(1, \eta^{*}\right)$ distribution where $\eta^{*}=\frac{\eta}{\theta}$. We can use the result from part (b) to derive

$$
\begin{aligned}
& \mathbb{P}\left(Y_{1: n}+\frac{1}{n} \ln \left(\frac{1-\gamma}{2}\right)<\frac{\eta}{\theta}<Y_{1: n}+\frac{1}{n} \ln \left(\frac{1+\gamma}{2}\right)\right)=\gamma \\
& \mathbb{P}\left(X_{1: n}+\frac{\theta}{n} \ln \left(\frac{1-\gamma}{2}\right)<\eta<X_{1: n}+\frac{\theta}{n} \ln \left(\frac{1+\gamma}{2}\right)\right)=\gamma
\end{aligned}
$$

A 90% confidence interval for η is obtained as

$$
\begin{aligned}
\left(x_{1: n}+\frac{\theta}{n} \ln \left(\frac{1-\gamma}{2}\right), x_{1: n}+\frac{\theta}{n} \ln \left(\frac{1+\gamma}{2}\right)\right) & =\left(162+\frac{850}{19} \ln (0.05), 162+\frac{850}{19} \ln (0.95)\right) \\
& =(27.980,159.705)
\end{aligned}
$$

Exercise 7

(a) We need to find the distribution of $Y=X^{2}$ when $X \sim \operatorname{WEI}(\theta, 2)$. The transformation $Y=X^{2}$ has the inverse transformation $X=\sqrt{Y}$ such that the pdf of Y is given by

$$
f_{Y}(y ; \theta)=f_{X}(\sqrt{y} ; \theta)\left|\frac{1}{2 \sqrt{y}}\right|=\frac{2}{\theta^{2}} \sqrt{y} e^{-\left(\frac{\sqrt{y}}{\theta}\right)^{2}} \frac{1}{2 \sqrt{y}}=\frac{1}{\theta^{2}} e^{-\frac{y}{\theta^{2}}}, \quad y>0 .
$$

We conclude that $Y \sim \operatorname{EXP}\left(\theta^{2}\right)$. Using the distributional result from Example 11.2.1, we have $\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\theta^{2}}=\frac{2 n \bar{Y}}{\theta^{2}} \sim \chi^{2}(2 n)$.
(b) From $\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\theta^{2}} \sim \chi^{2}(2 n)$, we obtain

$$
\mathbb{P}\left(\chi_{\frac{1-\gamma}{2}}^{2}<\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\theta^{2}}<\chi_{\frac{1+\gamma}{2}}^{2}\right)=\gamma \quad \Rightarrow \quad \mathbb{P}\left(\sqrt{\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}}}<\theta<\sqrt{\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}}}\right)=\gamma .
$$

A $100 \gamma \%$ confidence interval for θ is $\left(\sqrt{\frac{2 \sum_{i=1}^{n} x_{i}^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}}}, \sqrt{\frac{2 \sum_{i=1}^{n} x_{i}^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}}}\right)$.
(c) Note that $\exp \left[-(t / \theta)^{2}\right]$ is an increasing function in θ^{2}. A lower confidence limit for θ^{2} can thus be manipulated into a lower confidence limit for $\mathbb{P}(X>t)=\exp \left[-(t / \theta)^{2}\right]$. We find this lower confidence limit from

$$
\gamma=\mathbb{P}\left(\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\theta^{2}}<\chi_{\gamma}^{2}\right)=\mathbb{P}\left(\frac{\theta^{2}}{2 \sum_{i=1}^{n} X_{i}^{2}}>\frac{1}{\chi_{\gamma}^{2}}\right)=\mathbb{P}\left(\theta^{2}>\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\chi_{\gamma}^{2}}\right) .
$$

The remaining steps of the calculation are as follow

$$
\gamma=\mathbb{P}\left(\frac{1}{\theta^{2}}<\frac{\chi_{\gamma}^{2}}{2 \sum_{i=1}^{n} X_{i}^{2}}\right)=\mathbb{P}\left(\frac{-t^{2}}{\theta^{2}}>\frac{-t^{2} \chi_{\gamma}^{2}}{2 \sum_{i=1}^{n} X_{i}^{2}}\right)=\mathbb{P}\left(\exp \left[-(t / \theta)^{2}\right]>\exp \left(\frac{-t^{2} \chi_{\gamma}^{2}}{2 \sum_{i=1}^{n} X_{i}^{2}}\right)\right)
$$

where we used $t>0$ (the case $t=0$ should be excluded because $\mathbb{P}(X>0)=1)$. A lower $100 \gamma \%$ confidence limit for $\exp \left[-(t / \theta)^{2}\right]$ is $\ell\left(x_{1}, \ldots, x_{n}\right)=\exp \left(\frac{-t^{2} \chi_{\gamma}^{2}}{2 \sum_{i=1}^{n} x_{i}^{2}}\right)$.
(d) We first need to compute the $p^{t h}$ percentile for the given Weibull distribution. If we denote this percentile by x_{p}, then x_{p} satisfies the equation $\mathbb{P}\left(X \leq x_{p}\right)=\frac{p}{100}$. With

$$
F(x ; \theta)=\int_{0}^{x} \frac{2}{\theta^{2}} t e^{-\left(\frac{t}{\theta}\right)^{2}} d t=-\int_{0}^{x}\left(-\frac{2 t}{\theta^{2}}\right) e^{-\frac{t^{2}}{\theta^{2}}} d t=-\left.e^{-\frac{t^{2}}{\theta^{2}}}\right|_{0} ^{x}=1-e^{-\frac{x^{2}}{\theta^{2}}}, \quad x>0
$$

the p th percentile is obtained as

$$
1-e^{-\frac{x_{p}^{2}}{\theta^{2}}}=\frac{p}{100} \quad \Rightarrow \quad x_{p}=\sqrt{-\theta^{2} \ln \left(1-\frac{p}{100}\right)} .
$$

The expression $\sqrt{-\theta^{2} \ln \left(1-\frac{p}{100}\right)}$ is again an increasing function in θ^{2}. An upper confidence limit for θ^{2} will thus imply an upper confidence limit for the $p^{\text {th }}$ percentile of the distribution. We have

$$
\gamma=\mathbb{P}\left(\chi_{1-\gamma}^{2}<\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\theta^{2}}\right)=\mathbb{P}\left(\theta^{2}<\frac{2 \sum_{i=1}^{n} X_{i}^{2}}{\chi_{1-\gamma}^{2}}\right)
$$

and by noting that $-\ln \left(1-\frac{p}{100}\right)$ is a positive quantity

$$
\gamma=\mathbb{P}\left(-\theta^{2} \ln \left(1-\frac{p}{100}\right)<\frac{-2 \ln \left(1-\frac{p}{100}\right) \sum_{i=1}^{n} X_{i}^{2}}{\chi_{1-\gamma}^{2}}\right)=\mathbb{P}\left(x_{p}<\sqrt{\frac{-2 \ln \left(1-\frac{p}{100}\right) \sum_{i=1}^{n} X_{i}^{2}}{\chi_{1-\gamma}^{2}}}\right) .
$$

An upper $100 \gamma \%$ confidence limit for the $p^{t h}$ percentile is thus $\sqrt{\frac{-2 \ln \left(1-\frac{p}{100}\right) \sum_{i=1}^{n} x_{i}^{2}}{\chi_{1-\gamma}^{2}}}$.

Exercise 11

The setting corresponds to a random sample from the $\operatorname{BIN}(1, p)$ distribution. If $X \sim \operatorname{BIN}(1, p)$, then $\mathbb{E}(X)=p$ and $\operatorname{Var}(X)=p(1-p)$. The CLT implies that

$$
\frac{\sqrt{n}(\bar{X}-p)}{\sqrt{p(1-p)}} \xrightarrow{d} Z \sim \mathrm{~N}(0,1) .
$$

Now note that $\hat{p}=\bar{X}$ is a consistent estimator for p such that also $\frac{\sqrt{n}(\bar{X}-p)}{\sqrt{\hat{p}(1-\hat{p})}} \xrightarrow{d} Z \sim \mathrm{~N}(0,1)$. Hence, for large n, we find

$$
\begin{aligned}
\mathbb{P}\left(-z_{1-\frac{\alpha}{2}}<\frac{\sqrt{n}(\hat{p}-p)}{\left.\sqrt{\hat{p}(1-\hat{p})}<z_{1-\frac{\alpha}{2}}\right)}\right. & \approx 1-\alpha, \\
\mathbb{P}\left(\hat{p}-z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}<p<\hat{p}+z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) & \approx 1-\alpha .
\end{aligned}
$$

With $\hat{p}=\frac{5}{40}=\frac{1}{8}$ and $z_{1-\frac{\alpha}{2}}=z_{0.95}=1.645$ (see Table 3), an approximate 90% confidence interval for p is obtained as

$$
\begin{aligned}
\left(\hat{p}-z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) & =\left(\frac{1}{8}-1.645 \sqrt{\frac{\frac{1}{8} \cdot \frac{7}{8}}{40}}, \frac{1}{8}+1.645 \sqrt{\frac{\frac{1}{8} \cdot \frac{7}{8}}{40}}\right) \\
& =(0.039,0.211)
\end{aligned}
$$

Exercise 12

(a) Equation (11.3.20) implies that $\mathbb{P}\left(\frac{\bar{X}-\mu}{\sqrt{\frac{\mu}{n}}}<z_{\gamma}\right) \approx \gamma$ for large n. We need to manipulate the inequality inside the probability. Having this in mind, we define $\theta=\sqrt{\mu}$, such that

$$
\gamma \approx \mathbb{P}\left(\frac{\bar{X}-\mu}{\sqrt{\frac{\mu}{n}}}<z_{\gamma}\right)=\mathbb{P}\left(\frac{\bar{X}-\theta^{2}}{\frac{\theta}{\sqrt{n}}}<z_{\gamma}\right)=\mathbb{P}\left(\theta^{2}+\frac{z_{\gamma}}{\sqrt{n}} \theta-\bar{X}>0\right) .
$$

The solutions of the quadratic equation $\theta^{2}+\frac{z_{\gamma}}{\sqrt{n}} \theta-\bar{X}=0$ are $\theta_{1}=-\frac{z_{\gamma}}{2 \sqrt{n}}-\sqrt{\frac{z_{\gamma}^{2}}{4 n}+\bar{X}}$ and $\theta_{2}=-\frac{z_{\gamma}}{2 \sqrt{n}}+\sqrt{\frac{z_{\gamma}^{2}}{4 n}+\bar{X}}$. Since $\theta>0$ and $\theta_{1}<0$, it always holds that $\theta-\theta_{1}>0$, and the above can be written as

$$
\begin{aligned}
\gamma & \approx \mathbb{P}\left(\left(\theta-\theta_{1}\right)\left(\theta-\theta_{2}\right)>0\right)=\mathbb{P}\left(\theta-\theta_{2}>0\right)=\mathbb{P}\left(\theta_{2}<\theta\right)=\mathbb{P}\left(\theta_{2}^{2}<\mu\right) \\
& =\mathbb{P}\left(\left(-\frac{z_{\gamma}}{2 \sqrt{n}}+\sqrt{\frac{z_{\gamma}^{2}}{4 n}+\bar{X}}\right)^{2}<\mu\right)
\end{aligned}
$$

With $z_{\gamma}=z_{0.90}=1.282$ (see Table 3), an approximate one-sided lower 90% confidence limit for μ is obtained as

$$
\ell\left(x_{1}, \ldots, x_{n}\right)=\left(-\frac{z_{\gamma}}{2 \sqrt{n}}+\sqrt{\frac{z_{\gamma}^{2}}{4 n}+\bar{x}}\right)^{2}=\left(-\frac{1.282}{2 \sqrt{45}}+\sqrt{\frac{1.282^{2}}{4 \cdot 45}+1.7}\right)^{2}=1.468
$$

(b) For large n, Equation (11.3.21) yields

$$
\gamma \approx \mathbb{P}\left(\frac{\bar{X}-\mu}{\sqrt{\frac{\bar{x}}{n}}}<z_{\gamma}\right)=\mathbb{P}\left(\bar{X}-z_{\gamma} \sqrt{\frac{\bar{X}}{n}}<\mu\right) .
$$

With $z_{\gamma}=z_{0.90}=1.282$ (see Table 3), an approximate one-sided lower 90% confidence limit for μ is obtained as

$$
\ell\left(x_{1}, \ldots, x_{n}\right)=\bar{x}-z_{\gamma} \sqrt{\frac{\bar{x}}{n}}=1.7-1.282 \sqrt{\frac{1.7}{45}}=1.451
$$

Exercise 19

For the pdf of the $\mathrm{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ distribution with μ_{1} known, we have $f\left(x ; \sigma_{1}^{2}\right)=\left(2 \pi \sigma_{1}^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2} \frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}\right)$. This pdf is a member of the REC with $t(x)=\left(x-\mu_{1}\right)^{2} . S_{1}=\sum_{i=1}^{n_{1}}\left(X_{i}-\mu_{1}\right)^{2}$ is thus a sufficient statistic for σ_{1}^{2}. Similarly, $S_{2}=\sum_{j=1}^{n_{2}}\left(Y_{j}-\mu_{2}\right)^{2}$ is a sufficient statistic for σ_{2}^{2}.

The mean and standard deviation of the normal distribution are location-scale parameters. It is therefore easily shown that $\frac{X_{1}-\mu_{1}}{\sigma_{1}}, \ldots, \frac{X_{n_{1}}-\mu_{1}}{\sigma_{1}} \sim \mathrm{~N}(0,1)$ and $\frac{Y_{1}-\mu_{2}}{\sigma_{2}}, \ldots, \frac{Y_{n_{2}}-\mu_{2}}{\sigma_{2}} \sim \mathrm{~N}(0,1)$ and this implies both $\frac{S_{1}}{\sigma_{1}^{2}}=\sum_{i=1}^{n_{1}}\left(\frac{X_{i}-\mu_{1}}{\sigma_{1}}\right)^{2} \sim \chi^{2}\left(n_{1}\right)$ and $\frac{S_{2}}{\sigma_{2}^{2}}=\sum_{j=1}^{n_{2}}\left(\frac{Y_{j}-\mu_{2}}{\sigma_{2}}\right)^{2} \sim \chi^{2}\left(n_{2}\right)$. By taking ratios and rescaling we can find the pivotal quantity:

$$
\frac{n_{2} \sigma_{2}^{2}}{n_{1} \sigma_{1}^{2}} \frac{S_{1}}{S_{2}}=\frac{\left(\frac{S_{1}}{\sigma_{1}^{2}}\right) / n_{1}}{\left(\frac{S_{2}}{\sigma_{2}^{2}}\right) / n_{2}} \stackrel{d}{=} \frac{\chi^{2}\left(n_{1}\right) / n_{1}}{\chi^{2}\left(n_{2}\right) / n_{2}} \sim F\left(n_{1}, n_{2}\right),
$$

where $\stackrel{d}{=}$ is used to denote equivalence in distribution. Denoting the α quantile of the $F\left(n_{1}, n_{2}\right)$ distribution by f_{α}, we obtain

$$
\mathbb{P}\left(f_{\frac{\alpha}{2}}<\frac{n_{2} S_{1} \sigma_{2}^{2}}{n_{1} S_{2} \sigma_{1}^{2}}<f_{1-\frac{\alpha}{2}}\right)=1-\alpha \Rightarrow \mathbb{P}\left(f_{\frac{\alpha}{2}} \frac{n_{1} S_{2}}{n_{2} S_{1}}<\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}<f_{1-\frac{\alpha}{2}} \frac{n_{1} S_{2}}{n_{2} S_{1}}\right)=1-\alpha
$$

A $100(1-\alpha) \%$ confidence interval for $\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}$ is $\left(f_{\frac{\alpha}{2}} \frac{n_{1} s_{2}}{n_{2} s_{1}}, f_{1-\frac{\alpha}{2}} \frac{n_{1} s_{2}}{n_{2} s_{1}}\right)$.

