Solutions to Selected Exercises from Chapter 12 Bain \& Engelhardt - Second Edition

Andreas Alfons and Hanno Reuvers
Erasmus School of Economics, Erasmus Universiteit Rotterdam

Exercise 1

(a) If $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \mathrm{N}(\mu, 1)$, then $\frac{\bar{X}-\mu}{1 / \sqrt{n}}=\sqrt{n}(\bar{X}-\mu) \sim \mathrm{N}(0,1)$. For the rejection region A, we realize that

$$
\alpha=\mathbb{P}\left(\left.\frac{\bar{X}-\mu}{1 / \sqrt{n}}<-z_{1-\alpha} \right\rvert\, \mu=20\right)=\mathbb{P}\left(\left.\bar{X}<\mu-\frac{z_{1-\alpha}}{\sqrt{n}} \right\rvert\, \mu=20\right) .
$$

Using $z_{0.95} \approx 1.645$ and filling in the values, we find the reject region $A=\{\bar{x} \mid-\infty<$ $\bar{x} \leq 19.589\}$. For rejection region B we will reject in the right tail of the distribution. The calculation

$$
\alpha=\mathbb{P}\left(\left.\frac{\bar{X}-\mu}{1 / \sqrt{n}}>z_{1-\alpha} \right\rvert\, \mu=20\right)=\mathbb{P}\left(\left.\bar{X}>\mu+\frac{z_{1-\alpha}}{\sqrt{n}} \right\rvert\, \mu=20\right),
$$

shows that the rejection region B takes the form $\{\bar{x} \mid 20.411 \leq \bar{x}<\infty\}$.
(b) We need the probability to not reject even though the null hypothesis is false. For the critical region A, we have

$$
\begin{aligned}
\mathbb{P}(\mathrm{TII}) & =\mathbb{P}(\bar{X}>19.589 \mid \mu=21)=\mathbb{P}\left(\left.\frac{\bar{X}-21}{1 / \sqrt{16}}>\frac{19.589-21}{1 / \sqrt{16}} \right\rvert\, \mu=21\right) \\
& =\mathbb{P}(Z>-5.64)=\Phi(5.64) \approx 1
\end{aligned}
$$

For critical region B, the probability of a Type II error is

$$
\begin{aligned}
\mathbb{P}(\mathrm{TII}) & =\mathbb{P}(\bar{X}<20.411 \mid \mu=21)=\mathbb{P}\left(\left.\frac{\bar{X}-21}{1 / \sqrt{16}}<\frac{20.411-21}{1 / \sqrt{16}} \right\rvert\, \mu=21\right) \\
& =\mathbb{P}(Z<-2.36) \approx 0.01
\end{aligned}
$$

Comparing the probabilities of these Type II errors, we conclude that critical region A is unreasonable for this alternative.
(c) For critical region A, we have

$$
\begin{aligned}
\mathbb{P}(\mathrm{TII}) & =\mathbb{P}(\bar{X}>19.589 \mid \mu=19)=\mathbb{P}\left(\left.\frac{\bar{X}-19}{1 / \sqrt{16}}>\frac{19.589-19}{1 / \sqrt{16}} \right\rvert\, \mu=21\right) \\
& =\mathbb{P}(Z>2.36)=\Phi(-2.36) \approx 0.01,
\end{aligned}
$$

whereas for critical region B we get

$$
\begin{aligned}
\mathbb{P}(\mathrm{TII}) & =\mathbb{P}(\bar{X}<20.411 \mid \mu=19)=\mathbb{P}\left(\left.\frac{\bar{X}-19}{1 / \sqrt{16}}<\frac{20.411-19}{1 / \sqrt{16}} \right\rvert\, \mu=21\right) \\
& =\mathbb{P}(Z<5.64) \approx 1
\end{aligned}
$$

This time the unreasonable critical region is region B.
(d) We have

$$
\mathbb{P}(\bar{X} \in(A \cup B) \mid \mu=20)=\mathbb{P}(\bar{X} \in A \mid \mu=20)+\mathbb{P}(\bar{X} \in B \mid \mu=20)=0.05+0.05=0.1,
$$

since the critical regions A and B are disjoint (probabilities add up). The significance level for the test with rejection region $A \cup B$ is thus 10%.
(e) The condition $|\mu-20|=1$ implies either $\mu=19$ or $\mu=21$. We first consider $\mu=19$. Since A and B are disjoint, the probability to reject the null equals

$$
\begin{aligned}
\mathbb{P}\left({ }^{\prime} \text { reject } \mid \mu=19\right) & =\mathbb{P}(\bar{X} \in A \mid \mu=19)+\mathbb{P}(\bar{X} \in B \mid \mu=19) \\
& =\mathbb{P}(\bar{X} \leq 19.589 \mid \mu=19)+\mathbb{P}(\bar{X} \geq 20.411 \mid \mu=19) \\
& =\mathbb{P}\left(Z \leq \frac{19.589-19}{1 / \sqrt{16}}\right)+\mathbb{P}\left(Z \geq \frac{20.411-19}{1 / \sqrt{16}}\right)=\Phi(2.356)+\Phi(-5.644) \\
& \approx 0.9908 .
\end{aligned}
$$

The probability for a Type II error is thus $1-0.9908 \approx 0.92 \%$. We can perform a similar calculation for $\mu=21$, that is

$$
\begin{aligned}
\mathbb{P}\left({ }^{\prime} \text { reject }{ }^{\prime} \mid \mu=21\right) & =\mathbb{P}(\bar{X} \in A \mid \mu=21)+\mathbb{P}(\bar{X} \in B \mid \mu=21) \\
& =\mathbb{P}(\bar{X} \leq 19.589 \mid \mu=21)+\mathbb{P}(\bar{X} \geq 20.411 \mid \mu=21) \\
& =\mathbb{P}\left(Z \leq \frac{19.589-21}{1 / \sqrt{16}}\right)+\mathbb{P}\left(Z \geq \frac{20.411-21}{1 / \sqrt{16}}\right)=\Phi(-5.644)+\Phi(2.356) \\
& \approx 0.9908 .
\end{aligned}
$$

The probability for a Type II error is thus $1-0.9908 \approx 0.92 \%$. We see that rejection region $A \cup B$ controls the Type II error for alternatives that are both lower and higher than the value under the null.

Exercise 3

(a) The value of the Z-statistic is equal to $z_{0}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{11-12}{2 / \sqrt{20}} \approx-2.236$. According to the alternative hypothesis, we will reject in the left tail of the distribution. The critical value is $-z_{0.99} \approx-2.326$. Since $z_{0}>-2.236$, we do not reject H_{0}.
(b) Making use of the power function $\pi(\mu)$ as defined in Theorem 12.3.1, we find that the probability of a Type II error is

$$
\begin{aligned}
\beta & =1-\pi(10.5)=1-\Phi\left(-z_{1-\alpha}+\frac{\mu_{0}-10.5}{\sigma / \sqrt{n}}\right)=1-\Phi\left(-2.326+\frac{12-10.5}{2 / \sqrt{20}}\right) \\
& =1-\Phi(1.028) \approx 0.15
\end{aligned}
$$

(c) We use point 4. of Theorem 12.3.1. With $z_{1-\alpha}=z_{0.99}=2.326$ and $z_{1-\beta}=z_{0.9}=1.282$, the required sample size is

$$
n \geq \frac{\left(z_{1-\alpha}+z_{1-\beta}\right)^{2} \sigma^{2}}{\left(\mu_{0}-\mu\right)^{2}}=\frac{(2.326+1.282)^{2} 4}{(12-10.5)^{2}}=23.143
$$

At least $n=24$ observations are required.
(d) The numerical value of the t-test is equal to $t_{0}=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{11-12}{4 / \sqrt{20}}=-1.118$. We should reject the null hypothesis whenever $t_{0}<-t_{0.99}$, where $t_{0.99}$ denotes the 99% quantile of t-distribution with 19 degrees of freedom. We find $t_{0.99} \approx 2.539$. Since $t_{0}>-2.539$, we do not reject the null hypothesis.
(e) According to Theorem 12.3.3, we can use the test statistic $v_{0}=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{(20-1) \times 16}{9} \approx$ 33.78. For the given alternative, we should reject whenever $v_{0}>\chi_{0.99}^{2}$, where $\chi_{0.99}^{2}$ denotes the 99% quantile of the χ^{2}-distribution with 19 degrees of freedom. We have $\chi_{0.99}^{2} \approx 36.19$ and hence do not reject the null hypothesis.
(f) According to Theorem 12.3.3, the power function is $\pi\left(\sigma^{2}\right)=1-H\left(\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{1-\alpha}^{2}(n-1) ; n-1\right)$, where $H(x ; n-1)$ denotes the CDF of the $\chi^{2}(n-1)$ distribution. We write

$$
\begin{aligned}
1-H\left(\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{1-\alpha}^{2}(n-1) ; n-1\right) & \geq 0.9 \\
H\left(\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{1-\alpha}^{2}(n-1) ; n-1\right) & \leq 0.1 \\
\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{1-\alpha}^{2}(n-1) & \leq \chi_{0.1}^{2}(n-1) \\
\frac{\chi_{0.1}^{2}(n-1)}{\chi_{1-\alpha}^{2}(n-1)} & \geq \frac{\sigma_{0}^{2}}{\sigma^{2}} \\
\frac{\chi_{0.1}^{2}(n-1)}{\chi_{0.99}^{2}(n-1)} & \geq \frac{9}{18}=\frac{1}{2} .
\end{aligned}
$$

Going through Table 4, it can be seen that the above holds if $n-1 \geq 60$. Hence at least $n=61$ observations are required (note that Table 4 does not contain values for degrees of freedom between 50 and 60 , though). The probability of a Type II error if $\sigma^{2}=18$ is

$$
\begin{aligned}
\beta & =1-\pi\left(\sigma^{2}\right)=H\left(\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{1-\alpha}^{2}(n-1) ; n-1\right)=H\left(\frac{9}{18} \chi_{1-\alpha}^{2}(n-1) ; n-1\right) \\
& =H\left(\frac{1}{2} \chi_{0.99}^{2}(60) ; 60\right)=H(44.19 ; 60)
\end{aligned}
$$

whose value is not in Table 5, but could be computed with the approximation given there for large degrees of freedom.

Exercise 4

The pdf of X is $f(x ; p)=\mathbb{P}(X=x)=p(1-p)^{x-1}$ for $x=1,2, \ldots$, since there are $x-1$ unsuccessful tosses with probability $(1-p)^{x-1}$ before the first successful toss with probability p.
(a) For the probability of a Type I error we need the probability to reject when H_{0} is true. We thus use $p=0.80$, or

$$
\begin{aligned}
& \mathbb{P}(X \geq 3 \mid p=0.80)=1-\mathbb{P}(X=1 \mid p=0.80)-\mathbb{P}(X=2 \mid p=0.80) \\
& \quad=1-p(1-p)^{0}-p(1-p)=1-p-p(1-p)=(1-p)^{2}=0.20^{2}=0.04 .
\end{aligned}
$$

(b) We need the probability to not reject when $p=0.20$ and $p=0.30$. For general p, the probability of a Type II error is

$$
\begin{aligned}
\mathbb{P}(X<3 \mid p) & =\mathbb{P}(X=1 \mid p)+\mathbb{P}(X=2 \mid p)=p(1-p)^{0}+p(1-p)=p+p(1-p) \\
& =p(2-p)
\end{aligned}
$$

Denoting the probability of a Type II error by β, we have $\beta=0.20(2-0.20)=0.36$ and $\beta=0.30(2-0.30)=0.51$, for $p=0.20$ and $p=0.30$ respectively.
(c) Let us calculate the rejection probability for arbitrary p. We have

$$
\begin{aligned}
& \mathbb{P}(X \in\{1,14,15, \ldots\} \mid p)=\mathbb{P}(X=1 \mid p)+\sum_{x=14}^{\infty} \mathbb{P}(X=x \mid p) \\
& \quad=p(1-p)^{0}+\sum_{x=14}^{\infty} p(1-p)^{x-1}=p+(1-p)^{13} \sum_{x=0}^{\infty} p(1-p)^{x} \\
& \quad=p+(1-p)^{13} \frac{p}{1-(1-p)}=p+(1-p)^{13}
\end{aligned}
$$

using the following result on geometric series: $\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}$ for $|r|<1$. We can find the probability of a type I error by evaluating the expression above for $p=0.30$, that is $0.30+0.70^{13}=0.310$. For the type II error we need the probability to not reject. So denoting the probability of the type II error by β, we find

$$
\beta=\mathbb{P}(X \notin\{1,14,14, \ldots\} \mid p)=1-\left(p+(1-p)^{13}\right)
$$

whenever $p \neq 0.30$. For $p=0.20$, this gives $\beta=1-\left(0.20+0.80^{13}\right)=0.745$. For $p=0.80$, we obtain $\beta=1-\left(0.80+0.20^{13}\right)=0.200$.

Exercise 9

(a) We first compute the pooled variance estimate

$$
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}=\frac{8 \cdot 36+8 \cdot 45}{16}=40.5
$$

The t-statistic now takes the value $t=\frac{\bar{y}-\bar{x}}{s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}=\frac{10-16}{\sqrt{40.5\left(\frac{1}{9}+\frac{1}{9}\right)}}=-2$. Under the null hypothesis, this statistic follows a t-distribution with $n_{1}+n_{2}-2=9+9-2=16$ degrees of freedom. If $t_{0.95} \approx 1.756$ denotes the 95% quantile of this distribution, then we will reject if $|t|>1.756$. We have $-2<-1.756$ and therefore reject the null.
(b) From Equation (11.5.14) we estimate the degrees of freedom as

$$
\nu=\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}=\frac{(36 / 9+45 / 9)^{2}}{\frac{(36 / 9)^{2}}{8}+\frac{(45 / 9)^{2}}{8}}=15.805
$$

and compute the corresponding critical value by linear interpolation

$$
t_{0.95}=t_{0.95}(15)+0.805\left(t_{0.95}(16)-t_{0.95}(15)\right)=1.753+0.805(1.746-1.753)=1.747
$$

We will thus reject the null hypothesis if the absolute value of the observed test statistic exceeds 1.747. A calculation of this test statistic gives

$$
t_{0}=\frac{\bar{y}-\bar{x}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{1}^{2}}{n_{2}}}}=\frac{10-16}{\sqrt{\frac{36}{9}+\frac{45}{9}}}=-2,
$$

and we therefore reject the null hypothesis.
(c) The value of the test statistic is $t_{0}=\frac{\bar{y}-\bar{x}}{s_{D} / \sqrt{n}}=\frac{10-16}{9 / \sqrt{9}}=-2$. We should compare this outcome with the 95% quantile of the t-distribution with $(9-1)=8$ degrees of freedom. The implied critical value is 1.860 . Since $|-2|>1.860$ we reject the null hypothesis.
(d) We use Theorem 12.3.4. We compute the test statistic as $f_{0}=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{36}{45}=0.8$. If we let $f_{1-\alpha}\left(n_{2}-1, n_{1}-1\right)$ denote the $(1-\alpha)$-quantile of the F-distribution with $\left(n_{2}-1\right)$ and $\left(n_{1}-1\right)$ degrees of freedom, then we should reject whenever $f_{0} \leq \frac{1}{f_{1-\alpha}}$. We find $\frac{1}{f_{0.95}}=\frac{1}{3.44}=0.29$ and do not reject H_{0}.
(e) We have to derive the power function at $\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}=1.33$. For general $\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}$, we find

$$
\begin{aligned}
\pi\left(\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right) & =\mathbb{P}\left(\left.\frac{S_{1}^{2}}{S_{2}^{2}} \leq \frac{1}{f_{1-\alpha}} \right\rvert\, \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right)=\mathbb{P}\left(\left.\frac{S_{1}^{2}}{S_{2}^{2}} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \leq \frac{1}{f_{1-\alpha}} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \right\rvert\, \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right) \\
& =\mathbb{P}\left(\left.\frac{\left[\left(n_{1}-1\right) S_{1}^{2} / \sigma_{1}^{2}\right] /\left(n_{1}-1\right)}{\left[\left(n_{2}-1\right) S_{2}^{2} / \sigma_{2}^{2}\right] /\left(n_{2}-1\right)} \leq \frac{1}{f_{1-\alpha}} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \right\rvert\, \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right)=\mathbb{P}\left(F\left(n_{1}-1, n_{2}-1\right) \leq \frac{1}{f_{1-\alpha}} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\right)
\end{aligned}
$$

where $F\left(n_{1}-1, n_{2}-1\right)$ denotes an F-distributed random variable with $\left(n_{1}-1, n_{2}-1\right)$ degrees of freedom. After calculating $\frac{1}{f_{1-\alpha}} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}=0.387$ we find this probability to be equal approximately 0.1.

Exercise 11

(a) We use the Neyman-Pearson Lemma, Theorem 12.6.1 from B\&E. We should reject the nulll hypothesis when $\lambda(x ; 1,2)=\frac{f(x ; 1)}{f(x ; 2)}=\frac{1}{2 x}$ is small, or equivalently for large x. To find the most powerful test with significance level α, we require that

$$
\mathbb{P}(X \geq c \mid \theta=1)=\int_{c}^{1} f(x ; 1) d x=1-c=\alpha
$$

The most powerful critical region of size α for testing $H_{0}: \theta=1$ versus $H_{a}: \theta=2$ is thus $C^{*}=\{x \mid x \geq 1-\alpha\}$. For the given significance level we would reject when $x>0.95$.
(b) The power function is

$$
\pi(\theta)=\mathbb{P}(X \geq 0.95 \mid \theta)=\int_{0.95}^{1} f(x ; \theta) d x=\left.x^{\theta}\right|_{0.95} ^{1}=1-(0.95)^{\theta}
$$

For $\theta=2$ we have $\pi(2)=1-0.95^{2}=0.0975$.
(c) The joint pdf of $X_{1}, \ldots, X_{n}=\prod_{i=1}^{n} \theta x_{i}^{\theta-1}=\theta^{2}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1}$ and hence

$$
\lambda\left(x_{1}, \ldots, x_{n} ; 1,2\right)=\frac{1}{2^{n} \prod_{i=1}^{n} x_{i}}
$$

We should reject the null hypothesis for small values of $\lambda\left(x_{1}, \ldots, x_{n} ; 1,2\right)$. This coincides with large values of $\prod_{i=1}^{n} x_{i}$. The distribution of $\prod_{i=1}^{n} X_{i}$ is difficult to establish. However, we can apply additional monotone transformations. Note that rejection for large $\prod_{i=1}^{n} x_{i}$ is equivalent to rejection for large $\sum_{i=1}^{n} \ln \left(x_{i}\right)$, is equivalent to rejection for small $\sum_{i=1}^{n}-\ln \left(x_{i}\right)$. This will turn out to be helpful because if X has $\operatorname{pdf} f(x ; \theta)$, then $Y=-\ln (X)$ had pdf

$$
f_{Y}(y)=f_{X}\left(e^{-y}\right)\left|-e^{-y}\right|=\theta\left(e^{-y}\right)^{\theta-1} e^{-y}=\theta e^{-\theta y}, \quad y>0
$$

Apparently, Y is $\operatorname{EXP}(1 / \theta)$ distributed and thus $-2 \theta \sum_{i=1}^{n} \ln \left(X_{i}\right)=\frac{2 n \bar{Y}}{1 / \theta} \sim \chi^{2}(2 n)$. Since we agreed to reject for small values of $\sum_{i=1}^{n}-\ln \left(x_{i}\right)$, we compute the critical value from

$$
\mathbb{P}\left(-\sum_{i=1}^{n} \ln X_{i} \leq c \mid \theta=1\right)=\mathbb{P}\left(-2 \sum_{i=1}^{n} \ln X_{i} \leq 2 c\right)=\alpha .
$$

We find $c=\chi_{\alpha}^{2} / 2$, where χ_{α}^{2} denotes the $100 \alpha \%$ quantile of the $\chi^{2}(2 n)$ distribution. The most powerful critical region of size α for testing $H_{0}: \theta=1$ versus $H_{a}: \theta=2$ is thus $C^{*}=\left\{\left(x_{1}, \ldots, x_{n}\right) \left\lvert\,-\sum_{i=1}^{n} \ln x_{i} \leq \frac{\chi_{\alpha}^{2}}{2}\right.\right\}$.

Exercise 12

(a) We use the Neyman-Pearson Lemma, Theorem 12.6.1 from B\&E. Using the pdf $f(x ; \mu)=$ $\frac{e^{-\mu} \mu^{x}}{x!}$ we find

$$
\lambda\left(x ; \mu_{0}, \mu_{1}\right)=\frac{\frac{e^{-\mu_{0}} \mu_{0}^{x}}{x!}}{\frac{e^{-\mu_{1}} \mu_{1}^{x}}{x!}}=e^{\mu_{1}-\mu_{0}}\left(\frac{\mu_{0}}{\mu_{1}}\right)^{x} .
$$

We should reject when $\lambda\left(x ; \mu_{0}, \mu_{1}\right)$ is small, or equivalently when

$$
\begin{gathered}
e^{\mu_{1}-\mu_{0}}\left(\frac{\mu_{0}}{\mu_{1}}\right)^{x} \leq k_{1} \quad \Rightarrow \quad\left(\frac{\mu_{0}}{\mu_{1}}\right)^{x} \leq \frac{k_{1}}{e^{\mu_{1}-\mu_{0}}}=k_{2} \quad \Rightarrow \quad x \ln \left(\frac{\mu_{0}}{\mu_{1}}\right) \leq \ln \left(k_{2}\right)=k_{3} \\
\Rightarrow x \geq \frac{k_{3}}{\ln \left(\frac{\mu_{0}}{\mu_{1}}\right)}=c
\end{gathered}
$$

where k_{1}, k_{2}, k_{3} and c are the constants to be determined to control size. Also note that $\ln \left(\mu_{0} / \mu_{1}\right)<0$ because $\mu_{1}>\mu_{0}$ is given in the exercise. To obtain the correct significance level we should define the rejection region such that $\mathbb{P}\left(X>c \mid \mu=\mu_{0}\right)=1-F\left(c ; \mu_{0}\right)=\alpha$. The critical value c is thus $F^{-1}\left(1-\alpha ; \mu_{0}\right)$. The most powerful critical region of size α for testing $H_{0}: \mu=\mu_{0}$ versus $H_{a}: \mu=\mu_{1}$ is thus $C^{*}=\left\{x \mid x \geq F^{-1}\left(1-\alpha ; \mu_{0}\right)\right\}$.
(b) The joint pdf of X_{1}, \ldots, X_{n} is $f\left(x_{1}, \ldots, x_{n} ; \mu\right)=\prod_{i=1}^{n} \frac{e^{-\mu} \mu^{x_{i}}}{x_{i}!}=\frac{e^{-n \mu} \mu_{i=1}^{n} x_{i}}{\left(\prod_{i=1}^{n} x_{i}!\right)}$. We find

$$
\lambda\left(x ; \mu_{0}, \mu_{1}\right)=\frac{\frac{e^{-n \mu_{0}} \mu_{0}^{\sum_{i=1}^{n} x_{i}}}{\left(\prod_{i=1}^{n} x_{i}!\right)}}{\frac{e^{-n \mu_{1} \mu_{1}^{\sum_{i=1}^{n} x_{i}}}}{\left(\prod_{i=1}^{n} x_{i}!\right)}}=e^{n\left(\mu_{1}-\mu_{0}\right)}\left(\frac{\mu_{0}}{\mu_{1}}\right)^{\sum_{i=1}^{n} x_{i}} .
$$

We should reject when $\lambda\left(x ; \mu_{0}, \mu_{1}\right)$ is small, or equivalently when

$$
\begin{aligned}
& e^{n\left(\mu_{1}-\mu_{0}\right)}\left(\frac{\mu_{0}}{\mu_{1}}\right)^{\sum_{i=1}^{n} x_{i}} \leq k_{1} \quad \Rightarrow \quad\left(\frac{\mu_{0}}{\mu_{1}}\right)^{\sum_{i=1}^{n} x_{i}} \leq \frac{k_{1}}{e^{n\left(\mu_{1}-\mu_{0}\right)}}=k_{2} \\
& \Rightarrow \quad\left(\sum_{i=1}^{n} x_{i}\right) \ln \left(\frac{\mu_{0}}{\mu_{1}}\right) \leq \ln \left(k_{2}\right)=k_{3} \quad \Rightarrow \quad\left(\sum_{i=1}^{n} x_{i}\right) \geq \frac{k_{3}}{\ln \left(\frac{\mu_{0}}{\mu_{1}}\right)}=c
\end{aligned}
$$

where k_{1}, k_{2}, k_{3} and c are the constants to be determined to control size. If $X_{1}, \ldots, X_{n} \sim$ $\operatorname{POI}(\mu)$, then $\sum_{i=1}^{n} X_{i} \sim \operatorname{POI}(n \mu)$ (see Example 6.4.5). To obtain the correct significance level we should define the rejection region such that $\mathbb{P}\left(\sum_{i=1}^{n} X_{i}>c \mid \mu=\mu_{0}\right)=$ $1-F\left(c ; n \mu_{0}\right)=\alpha$. The critical value c is thus $F^{-1}\left(1-\alpha ; n \mu_{0}\right)$. The most powerful critical region of size α for testing $H_{0}: \mu=\mu_{0}$ versus $H_{a}: \mu=\mu_{1}$ is thus $C^{*}=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n} x_{i} \geq F^{-1}\left(1-\alpha ; n \mu_{0}\right)\right\}$.

Exercise 16

Suppose we would test $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta=\theta_{1}$ with $\theta_{1}>\theta_{0}$. Having simple hypothesis we could now use the Neyman-Pearson Lemma, Theorem 12.6.1 from B\&E. We would get the joint pdf

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \frac{3 x_{i}^{2}}{\theta} e^{-x_{i}^{3} / \theta}=\frac{3^{n}}{\theta^{n}}\left(\prod_{i=1}^{n} x_{i}\right)^{2} e^{-\frac{1}{\theta} \sum_{i=1}^{n} x_{i}^{3}}
$$

and

$$
\lambda\left(x_{1}, \ldots, x_{n} ; \theta_{0}, \theta_{1}\right)=\frac{\frac{3^{n}}{\theta_{0}^{n}}\left(\prod_{i=1}^{n} x_{i}\right)^{2} e^{-\frac{1}{\theta_{0}} \sum_{i=1}^{n} x_{i}^{3}}}{\frac{3^{n}}{\theta_{1}^{n}}\left(\prod_{i=1}^{n} x_{i}\right)^{2} e^{-\frac{1}{\theta_{1}} \sum_{i=1}^{n} x_{i}^{3}}}=\left(\frac{\theta_{1}}{\theta_{0}}\right)^{n} e^{\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{0}}\right) \sum_{i=1}^{n} x_{i}^{3}}
$$

The null hypothesis should be rejected if

$$
\begin{gathered}
\left(\frac{\theta_{1}}{\theta_{0}}\right)^{n} e^{\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{0}}\right) \sum_{i=1}^{n} x_{i}^{3}} \leq k_{1} \quad \Rightarrow \quad e^{\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{0}}\right) \sum_{i=1}^{n} x_{i}^{3}} \leq k_{1}\left(\frac{\theta_{0}}{\theta_{1}}\right)^{n}=k_{2} \\
\Rightarrow \quad\left(\frac{1}{\theta_{1}}-\frac{1}{\theta_{0}}\right) \sum_{i=1}^{n} x_{i}^{3} \leq \ln k_{2}=k_{3} \quad \Rightarrow \quad \sum_{i=1}^{n} x_{i}^{3} \geq \frac{k_{3}}{\frac{1}{\theta_{1}}-\frac{1}{\theta_{0}}}=c
\end{gathered}
$$

where k_{1}, k_{2}, k_{3} and c are the constants to be determined to control the Type I error. We have to find the distribution of $\sum_{i=1}^{n} X_{i}^{3}$. Let X have pdf $f(x ; \theta)$, then $Y=X^{3}$ has the pdf

$$
f_{Y}(y)=f_{X}\left(y^{\frac{1}{3}}\right)\left|\frac{1}{3} y^{-\frac{2}{3}}\right|=\frac{3 y^{\frac{2}{3}}}{\theta} e^{-\frac{y}{\theta}} \frac{1}{3} y^{-\frac{2}{3}}=\frac{1}{\theta} e^{-\frac{y}{\theta}}, \quad y>0
$$

We conclude that $Y \sim \operatorname{EXP}(\theta)$ and realize that $\frac{2}{\theta} \sum_{i=1}^{n} X_{i}^{3}=\frac{2 n \bar{Y}}{\theta} \sim \chi^{2}(2 n)$. Size control requires

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}^{3} \geq c \mid \theta=\theta_{0}\right)=\mathbb{P}\left(\frac{2}{\theta_{0}} \sum_{i=1}^{n} X_{i}^{3} \geq \frac{2 c}{\theta_{0}}\right)=\alpha
$$

or $\frac{2 c}{\theta_{0}}=\chi_{1-\alpha}^{2}$, hence $c=\frac{\theta_{0} \chi_{1-\alpha}^{2}}{2}$, where $\chi_{1-\alpha}^{2}$ denotes the $100(1-\alpha) \%$ quantile of the $\chi^{2}(2 n)$ distribution. The most powerful critical region of size α for testing $H_{0}: \theta=\theta_{0}$ versus $H_{a}: \theta=\theta_{1}$ (where $\theta_{1}>\theta_{0}$) is thus $C^{*}=\left\{\left(x_{1}, \ldots, x_{n}\right) \left\lvert\, \sum_{i=1}^{n} x_{i}^{3} \geq \frac{\theta_{0} \chi_{1-\alpha}^{2}}{2}\right.\right\}$. Since the critical region C^{*}
does not depend on a specific value of $\theta_{1}>\theta_{0}$, it corresponds to a uniformly most powerful test for $H_{0}: \theta=\theta_{0}$ against $H_{a}: \theta>\theta_{0}$.

Exercise 17

(a) We first consider $H_{0}: \sigma=\sigma_{0}$ and $H_{a}: \sigma=\sigma_{1}$ with $\sigma_{1}>\sigma_{0}$. We use the Neyman-Pearson Lemma, Theorem 12.6.1 from B\&E. The joint pdf

$$
f\left(x_{1}, \ldots, x_{n} ; \sigma\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x_{i}^{2}}{2 \sigma^{2}}}=\left(2 \pi \sigma^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}}
$$

and

$$
\lambda\left(x_{1}, \ldots, x_{n} ; \sigma_{0}, \sigma_{1}\right)=\frac{\left(2 \pi \sigma_{0}^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma_{0}^{2}} \sum_{i=1}^{n} x_{i}^{2}}}{\left(2 \pi \sigma_{1}^{2}\right)^{-n / 2} e^{-\frac{1}{2 \sigma_{1}^{2}} \sum_{i=1}^{n} x_{i}^{2}}}=\left(\frac{\sigma_{1}}{\sigma_{0}}\right)^{n} e^{\left(\frac{1}{2 \sigma_{1}^{2}}-\frac{1}{2 \sigma_{0}^{2}}\right) \sum_{i=1}^{n} x_{i}^{2}}
$$

H_{0} is rejected if $\lambda\left(x_{1}, \ldots, x_{n} ; \sigma_{0}, \sigma_{1}\right)$ is too small, or equivalently,

$$
\begin{gathered}
\left(\frac{\sigma_{1}}{\sigma_{0}}\right)^{n} e^{\left(\frac{1}{2 \sigma_{1}^{2}}-\frac{1}{2 \sigma_{0}^{2}}\right) \sum_{i=1}^{n} x_{i}^{2}} \leq k_{1} \Rightarrow e^{\left(\frac{1}{2 \sigma_{1}^{2}}-\frac{1}{2 \sigma_{0}^{2}}\right) \sum_{i=1}^{n} x_{i}^{2}} \leq k_{1}\left(\frac{\theta_{0}}{\theta_{1}}\right)^{n}=k_{2} \\
\Rightarrow \quad\left(\frac{1}{2 \sigma_{1}^{2}}-\frac{1}{2 \sigma_{0}^{2}}\right) \sum_{i=1}^{n} x_{i}^{2} \leq \ln k_{2}=k_{3} \quad \Rightarrow \quad \sum_{i=1}^{n} x_{i}^{2} \geq \frac{k_{3}}{\frac{1}{2 \sigma_{1}^{2}}-\frac{1}{2 \sigma_{0}^{2}}}=c
\end{gathered}
$$

where k_{1}, k_{2}, k_{3} and c are the constants to be determined to control the Type I error. If $X_{1}, \ldots, X_{n} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$, then $\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sigma^{2}} \sim \chi^{2}(n)$. We can thus control the probability of a Type I error by requiring

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i}^{2} \geq c \mid \sigma=\sigma_{0}\right)=\mathbb{P}\left(\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sigma_{0}^{2}} \geq \frac{c}{\sigma_{0}^{2}}\right)=\alpha .
$$

This implies $\frac{c}{\sigma_{0}^{2}}=\chi_{1-\alpha}^{2}$ or $c=\sigma_{0}^{2} \chi_{1-\alpha}^{2}$, where $\chi_{1-\alpha}^{2}$ denotes the $100(1-\alpha) \%$ quantile of the $\chi^{2}(n)$ distribution. The most powerful critical region of size α for testing $H_{0}: \sigma=\sigma_{0}$ versus $H_{a}: \sigma=\sigma_{1}$ (where $\sigma_{1}>\sigma_{0}$) is thus $C^{*}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n} x_{i}^{2} \geq \sigma_{0}^{2} \chi_{1-\alpha}^{2}\right\}$. Since the critical region C^{*} does not depend on a specific value of $\sigma_{1}>\sigma_{0}$, it corresponds to a uniformly most powerful test for $H_{0}: \sigma=\sigma_{0}$ against $H_{a}: \sigma>\sigma_{0}$.
(b) The power function is

$$
\pi(\sigma)=\mathbb{P}\left(\sum_{i=1}^{n} X_{i}^{2} \geq \sigma_{0}^{2} \chi_{1-\alpha}^{2} \mid \sigma\right)=\mathbb{P}\left(\left.\frac{\sum_{i=1}^{n} X_{i}^{2}}{\sigma^{2}} \geq \frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{1-\alpha}^{2} \right\rvert\, \sigma\right)=1-H\left(\frac{\sigma_{0}^{2}}{\sigma^{2}} \chi_{1-\alpha}^{2} ; n\right),
$$

where $H(x ; n)$ denotes the CDF of the $\chi^{2}(n)$ distribution.
(c) $\pi(4)=1-H\left(\frac{1}{4} \chi_{0.995}^{2} ; 20\right)=1-H(10.00 ; 20)=1-0.032=0.968$.

Exercise 27

(a) The joint distribution of X_{1}, \ldots, X_{n} is $f(\boldsymbol{x} ; \theta)=\prod_{i=1}^{n} \frac{1}{\theta} e^{-x_{i} / \theta}=\theta^{-n} e^{-n \bar{x} / \theta}$. If the null is true, then θ has to equal θ_{0}. The unrestricted ML estimate is $\hat{\theta}=\bar{x}$ (see Example 9.2.7). This implies

$$
\lambda(\boldsymbol{x})=\frac{\max _{\theta \in \Omega_{0}} f(\boldsymbol{x} ; \theta)}{\max _{\theta \in \Omega} f(\boldsymbol{x} ; \theta)}=\frac{f\left(\boldsymbol{x} ; \theta_{0}\right)}{f(\boldsymbol{x} ; \hat{\theta})}=\frac{\theta_{0}^{-n} e^{-n \bar{x} / \theta_{0}}}{\bar{x}^{-n} e^{-n}}=\left(\frac{\bar{x}}{\theta_{0}}\right)^{n} e^{n\left(1-\frac{\bar{x}}{\theta_{0}}\right)}
$$

and

$$
-2 \ln (\lambda(\boldsymbol{x}))=-2 n\left(1-\frac{\bar{x}}{\theta_{0}}+\ln \left(\frac{\bar{x}}{\theta_{0}}\right)\right) .
$$

The null hypothesis imposes 1 restriction on the parameter space. According to Equation (12.8.3), an approximate size α test is to reject H_{0} if

$$
-2 n\left(1-\frac{\bar{x}}{\theta_{0}}+\ln \left(\frac{\bar{x}}{\theta_{0}}\right)\right) \geq \chi_{1-\alpha}^{2}(1)
$$

(b) The parameter space is $\Omega=\left[\theta_{0}, \infty\right)$. There is still only the single parameter value θ_{0} possible under the null. We now compute the ML estimate for $\theta \in\left[\theta_{0}, \infty\right)$. From part (a) we have the likelihood $L(\theta)=\theta^{-n} e^{-n \bar{x}} / \theta$ which implies the \log-likelihood $\ln L(\theta)=$ $-n \ln (\theta)-\frac{n \bar{x}}{\theta}$. The first derivative is

$$
\frac{d}{d \theta} \ln L(\theta)=-\frac{n}{\theta}+\frac{n \bar{x}}{\theta^{2}}=-\frac{n}{\theta^{2}}(\theta-\bar{x})= \begin{cases}- & \text { if } \theta>\bar{x} \\ + & \text { if } \theta<\bar{x}\end{cases}
$$

For this we conclude that the maximum will equal \bar{x} when $\theta_{0}<\bar{x}$, or θ_{0} when $\theta_{0}>\bar{x}$. We conclude that

$$
\lambda(\boldsymbol{x})=\frac{\max _{\theta \in \Omega_{0}} f(\boldsymbol{x} ; \theta)}{\max _{\theta \in \Omega} f(\boldsymbol{x} ; \theta)}= \begin{cases}\left(\frac{\bar{x}}{\theta_{0}}\right)^{n} e^{n\left(1-\frac{\bar{x}}{\theta_{0}}\right)} & \text { if } \bar{x} / \theta_{0}>1 \\ 1 & \text { if } \bar{x} / \theta_{0}<1\end{cases}
$$

Now recall that we should reject the null hypothesis for small values of $\lambda(\boldsymbol{x})$ where 'small' should be quantified based on the maximum probability of a Type I error. Under the null, we have

$$
\begin{aligned}
\mathbb{P}\left(\lambda(\boldsymbol{X})<1 \mid \theta_{0}\right) & =\mathbb{P}\left(\bar{X} / \theta_{0}>1 \mid \theta_{0}\right)=\mathbb{P}\left(\left.\frac{2 n \bar{X}}{\theta_{0}}>2 n \right\rvert\, \theta_{0}\right)=\mathbb{P}\left(\chi^{2}(2 n)>2 n\right) \\
& =1-\mathbb{P}\left(\chi^{2}(2 n) \leq 2 n\right)
\end{aligned}
$$

From Table 5 in the Appendix C of $\mathrm{B} \& \mathrm{E}$ we can see that this probability varies around 50%. For typical sizes (say $1 \%, 5 \%, 10 \%$) we will thus find ourselves in the case where $\bar{x} / \theta_{0}>1$. We will thus assume that $\alpha<\mathbb{P}\left(\lambda(\boldsymbol{X})<1 \mid \theta_{0}\right)$ (and thus $\bar{x} / \theta_{0}>1$).
The rejection regions are of the following forms

$$
\left(\frac{\bar{x}}{\theta_{0}}\right)^{n} e^{n\left(1-\frac{\bar{x}}{\theta_{0}}\right)} \leq k \quad \Rightarrow \quad\left(\frac{\bar{x}}{\theta_{0}}\right) e^{\left(1-\frac{\bar{x}}{\theta_{0}}\right)} \leq k^{1 / n}=k_{1} \quad \Rightarrow \quad\left(\frac{\bar{x}}{\theta_{0}}\right) e^{-\frac{\bar{x}}{\theta_{0}}} \leq k_{1} e^{-1}=k_{2}
$$

where k, k_{1} and k_{2} are the constants to be determined to control the Type I error. To analysis the inequality $\left(\frac{\bar{x}}{\theta_{0}}\right) e^{-\frac{\bar{x}}{\theta_{0}}} \leq k_{2}$ in more detail, we define the function $f(y)=y e^{-y}$ such that $f\left(\frac{\bar{x}}{\theta_{0}}\right)=\left(\frac{\bar{x}}{\theta_{0}}\right) e^{-\frac{\bar{x}}{\theta_{0}}}$.

Note that

$$
\frac{d}{d y} f(y)=e^{-y}-y e^{-y}=(1-y) e^{-y}
$$

The function $f(y)$ is thus decreasing for $y>1$ and returning to the problem at hand we also have that $\left(\frac{\bar{x}}{\theta_{0}}\right) e^{-\frac{\bar{x}}{\theta_{0}}}$ is decreasing for $\left(\frac{\bar{x}}{\theta_{0}}\right)>1$ (our case of interest, i.e. the case when $\lambda(\boldsymbol{x})<1$). Low values of $f\left(\frac{\bar{x}}{\theta_{0}}\right)=\left(\frac{\bar{x}}{\theta_{0}}\right) e^{-\frac{\bar{x}}{\theta_{0}}}$ are thus achieved by high values of $\frac{\bar{x}}{\theta_{0}}$, see Figure 1 below.

Figure 1: A visualization of the function $f(y)$.
We conclude that

$$
\left(\frac{\bar{x}}{\theta_{0}}\right) e^{-\frac{\bar{x}}{\theta_{0}}} \leq k_{1} e^{-1}=k_{2} \quad \Rightarrow \quad \frac{\bar{x}}{\theta_{0}} \geq k_{3} \quad \Rightarrow \quad \frac{2 n \bar{x}}{\theta_{0}} \geq 2 n k_{3}=c,
$$

where k_{3} and c are constant to be determined to control the Type I error. Under the null hypothesis we have $\frac{2 n \bar{X}}{\theta_{0}} \sim \chi^{2}(2 n)$, therefore

$$
\mathbb{P}\left(\left.\frac{2 n \bar{X}}{\theta_{0}} \geq c \right\rvert\, \theta_{0}\right)=\alpha \quad \Rightarrow \quad c=\chi_{1-\alpha}^{2}(2 n)
$$

For typical sizes, the GLR test of size α has critical region

$$
C^{*}=\left\{x_{1}, \ldots, x_{n} \left\lvert\, \frac{2 n \bar{x}}{\theta_{0}} \geq \chi_{1-\alpha}^{2}(2 n)\right.\right\} .
$$

Exercise 29

We have $X_{1}, \ldots, X_{n} \sim \operatorname{UNIF}(0, \theta)$. The joint pdf is

$$
f(\boldsymbol{x} ; \theta)=\prod_{i=1}^{n} \frac{1}{\theta} \mathbb{1}\left\{x_{i} \leq \theta\right\}=\theta^{-n} \mathbb{1}\left\{\max _{i=1, \ldots, n} x_{i} \leq \theta\right\} .
$$

If the null is true, then $\theta=\theta_{0}$, whereas the unrestricted ML estimate is $\hat{\theta}=\max _{1, \ldots, n} x_{i}$. We have

$$
\lambda(\boldsymbol{x})=\frac{\max _{\theta \in \Omega_{0}} f(\boldsymbol{x} ; \theta)}{\max _{\theta \in \Omega} f(\boldsymbol{x} ; \theta)}=\frac{f\left(\boldsymbol{x} ; \theta_{0}\right)}{f(\boldsymbol{x} ; \hat{\theta})}=\left(\frac{\max _{1, \ldots, n} x_{i}}{\theta_{0}}\right)^{n} \mathbb{1}\left\{\max _{i=1, \ldots, n} x_{i} \leq \theta_{0}\right\}
$$

We should reject the null hypothesis when $\lambda(\boldsymbol{x})$ is small. The most extreme situation occurs when $\lambda(\boldsymbol{x})=0$ because $\max _{i=1, \ldots, n} x_{i}$ exceeds θ_{0}. If this happens, then we know for sure that we should reject the null hypothesis because the event $\left\{\max _{i=1, \ldots, n} x_{i}>\theta_{0}\right\}$ cannot occur if $X_{1}, \ldots, X_{n} \sim \operatorname{UNIF}\left(0, \theta_{0}\right)$. Actually, there is not really any reason to conduct a hypothesis test because we are certain that our null hypothesis $H_{0}: \theta=\theta_{0}$ is false as soon as we observe a maximum outcome larger than θ_{0}. So let us rule out this scenario, and continue to see what is happening under H_{0}.

Under H_{0}, we have $X_{1}, \ldots, X_{n} \sim \operatorname{UNIF}\left(0, \theta_{0}\right)$ and we must have $\mathbb{1}\left\{\max _{i=1, \ldots, n} X_{i} \leq \theta_{0}\right\}=1$ with probability one. Rejection for small values of $\lambda(\boldsymbol{x})$ is thus equivalent to rejecting for small values of $\max _{1, \ldots, n} x_{i}$. Denoting the critical value by c, we must have

$$
\mathbb{P}\left(\max _{i=1, \ldots, n} X_{i} \leq c \mid \theta_{0}\right)=\mathbb{P}\left(X_{1} \leq c, \ldots, X_{n} \leq c \mid \theta_{0}\right)=\left[\mathbb{P}\left(X_{1} \leq c \mid \theta_{0}\right)\right]^{n}=\left(\frac{c}{\theta_{0}}\right)^{n}=\alpha
$$

to control for the probability of a Type I error. We conclude that $c=\theta_{0} \alpha^{1 / n}$. The GLR test of size α has critical region

$$
C^{*}=\left\{x_{1}, \ldots, x_{n} \mid \max _{i=1, \ldots, n} x_{i} \leq \theta_{0} \alpha^{1 / n}\right\}
$$

Exercise 31

The joint pdf of the sample is $f(\boldsymbol{x} ; \theta)=\prod_{i=1}^{n} \theta x_{i}^{\theta-1}=\theta^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1}$. Under H_{0} we have only a single parameter value. It remains to compute the unrestricted estimator. The likelihood is $L(\theta)=\theta^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1}$ and log-likelihood is

$$
\ln L(\theta)=n \ln (\theta)+(\theta-1) \sum_{i=1}^{n} \ln \left(x_{i}\right)
$$

The first and second derivative of the log-likelihood with respect to θ are

$$
\begin{aligned}
\frac{d}{d \theta} \ln L(\theta) & =\frac{n}{\theta}+\sum_{i=1}^{n} \ln \left(x_{i}\right), \\
\frac{d^{2}}{d \theta^{2}} \ln L(\theta) & =-\frac{n}{\theta^{2}}<0, \quad \text { for all } \theta
\end{aligned}
$$

We obtain $\hat{\theta}=-\frac{n}{\sum_{i=1}^{n} \ln \left(x_{i}\right)}$ (the second order condition is automatically fulfilled). The GLR evaluates to

$$
\lambda(\boldsymbol{x})=\frac{\max _{\theta \in \Omega_{0}} f(\boldsymbol{x} ; \theta)}{\max _{\theta \in \Omega} f(\boldsymbol{x} ; \theta)}=\frac{f\left(\boldsymbol{x} ; \theta_{0}\right)}{f(\boldsymbol{x} ; \hat{\theta})}=\frac{\theta_{0}^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta_{0}-1}}{(\hat{\theta})^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\hat{\theta}-1}}=\left(\frac{\theta_{0}}{\hat{\theta}}\right)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta_{0}-\hat{\theta}}
$$

and we can additionally compute

$$
\begin{aligned}
-2 \ln (\lambda(\boldsymbol{x})) & =-2 n \ln \left(\frac{\theta_{0}}{\hat{\theta}}\right)-2\left(\theta_{0}-\hat{\theta}\right) \sum_{i=1}^{n} \ln \left(x_{i}\right) \\
& =-2 n \ln \left(\frac{\theta_{0}}{\hat{\theta}}\right)+2 n\left(\frac{\theta_{0}-\hat{\theta}}{\hat{\theta}}\right)
\end{aligned}
$$

where we have used the definition of $\hat{\theta}$ to replace $\sum_{i=1}^{n} \ln \left(x_{i}\right)$. According to Equation (12.8.3), an approximate size α test is to reject H_{0} if

$$
-2 \ln (\lambda(\boldsymbol{x}))=-2 n \ln \left(\frac{\theta_{0}}{\hat{\theta}}\right)+2 n\left(\frac{\theta_{0}-\hat{\theta}}{\hat{\theta}}\right) \geq \chi_{1-\alpha}^{2}(1)
$$

