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Exercise 1

(a) If X1, . . . , Xn
i.i.d.∼ N(µ, 1), then X̄−µ

1/
√
n

=
√
n(X̄ − µ) ∼ N(0, 1). For the rejection region A,

we realize that

α = P
(
X̄ − µ
1/
√
n
< −z1−α

∣∣∣∣µ = 20

)
= P

(
X̄ < µ− z1−α√

n

∣∣∣∣µ = 20

)
.

Using z0.95 ≈ 1.645 and filling in the values, we find the reject region A = {x̄ | − ∞ <
x̄ ≤ 19.589}. For rejection region B we will reject in the right tail of the distribution. The
calculation

α = P
(
X̄ − µ
1/
√
n
> z1−α

∣∣∣∣µ = 20

)
= P

(
X̄ > µ+

z1−α√
n

∣∣∣∣µ = 20

)
,

shows that the rejection region B takes the form {x̄ | 20.411 ≤ x̄ <∞}.

(b) We need the probability to not reject even though the null hypothesis is false. For the
critical region A, we have

P(TII) = P(X̄ > 19.589|µ = 21) = P
(
X̄ − 21

1/
√

16
>

19.589− 21

1/
√

16

∣∣∣∣µ = 21

)
= P(Z > −5.64) = Φ(5.64) ≈ 1.

For critical region B, the probability of a Type II error is

P(TII) = P(X̄ < 20.411|µ = 21) = P
(
X̄ − 21

1/
√

16
<

20.411− 21

1/
√

16

∣∣∣∣µ = 21

)
= P(Z < −2.36) ≈ 0.01.

Comparing the probabilities of these Type II errors, we conclude that critical region A is
unreasonable for this alternative.

(c) For critical region A, we have

P(TII) = P(X̄ > 19.589|µ = 19) = P
(
X̄ − 19

1/
√

16
>

19.589− 19

1/
√

16

∣∣∣∣µ = 21

)
= P(Z > 2.36) = Φ(−2.36) ≈ 0.01,
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whereas for critical region B we get

P(TII) = P(X̄ < 20.411|µ = 19) = P
(
X̄ − 19

1/
√

16
<

20.411− 19

1/
√

16

∣∣∣∣µ = 21

)
= P(Z < 5.64) ≈ 1.

This time the unreasonable critical region is region B.

(d) We have

P
(
X̄ ∈ (A ∪B)

∣∣µ = 20
)

= P
(
X̄ ∈ A

∣∣µ = 20
)

+ P
(
X̄ ∈ B

∣∣µ = 20
)

= 0.05 + 0.05 = 0.1,

since the critical regions A and B are disjoint (probabilities add up). The significance level
for the test with rejection region A ∪B is thus 10%.

(e) The condition |µ−20| = 1 implies either µ = 19 or µ = 21. We first consider µ = 19. Since
A and B are disjoint, the probability to reject the null equals

P(′reject′|µ = 19) = P(X̄ ∈ A|µ = 19) + P(X̄ ∈ B|µ = 19)

= P(X̄ ≤ 19.589|µ = 19) + P(X̄ ≥ 20.411|µ = 19)

= P
(
Z ≤ 19.589− 19

1/
√

16

)
+ P

(
Z ≥ 20.411− 19

1/
√

16

)
= Φ(2.356) + Φ(−5.644)

≈ 0.9908.

The probability for a Type II error is thus 1− 0.9908 ≈ 0.92%. We can perform a similar
calculation for µ = 21, that is

P(′reject′|µ = 21) = P(X̄ ∈ A|µ = 21) + P(X̄ ∈ B|µ = 21)

= P(X̄ ≤ 19.589|µ = 21) + P(X̄ ≥ 20.411|µ = 21)

= P
(
Z ≤ 19.589− 21

1/
√

16

)
+ P

(
Z ≥ 20.411− 21

1/
√

16

)
= Φ(−5.644) + Φ(2.356)

≈ 0.9908.

The probability for a Type II error is thus 1−0.9908 ≈ 0.92%. We see that rejection region
A ∪ B controls the Type II error for alternatives that are both lower and higher than the
value under the null.

Exercise 3

(a) The value of the Z-statistic is equal to z0 = x̄−µ0

σ/
√
n

= 11−12
2/
√

20
≈ −2.236. According to the

alternative hypothesis, we will reject in the left tail of the distribution. The critical value
is −z0.99 ≈ −2.326. Since z0 > −2.236, we do not reject H0.

(b) Making use of the power function π(µ) as defined in Theorem 12.3.1, we find that the
probability of a Type II error is

β = 1− π(10.5) = 1− Φ

(
−z1−α +

µ0 − 10.5

σ/
√
n

)
= 1− Φ

(
−2.326 +

12− 10.5

2/
√

20

)
= 1− Φ(1.028) ≈ 0.15.
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(c) We use point 4. of Theorem 12.3.1. With z1−α = z0.99 = 2.326 and z1−β = z0.9 = 1.282,
the required sample size is

n ≥ (z1−α + z1−β)2σ2

(µ0 − µ)2
=

(2.326 + 1.282)24

(12− 10.5)2
= 23.143.

At least n = 24 observations are required.

(d) The numerical value of the t-test is equal to t0 = x̄−µ0

s/
√
n

= 11−12
4/
√

20
= −1.118. We should

reject the null hypothesis whenever t0 < −t0.99, where t0.99 denotes the 99% quantile of
t-distribution with 19 degrees of freedom. We find t0.99 ≈ 2.539. Since t0 > −2.539, we do
not reject the null hypothesis.

(e) According to Theorem 12.3.3, we can use the test statistic v0 = (n−1)s2

σ2 = (20−1)×16
9 ≈

33.78. For the given alternative, we should reject whenever v0 > χ2
0.99, where χ2

0.99 denotes
the 99% quantile of the χ2-distribution with 19 degrees of freedom. We have χ2

0.99 ≈ 36.19
and hence do not reject the null hypothesis.

(f) According to Theorem 12.3.3, the power function is π(σ2) = 1−H
(σ2

0

σ2χ
2
1−α(n− 1);n− 1

)
,

where H(x;n− 1) denotes the CDF of the χ2(n− 1) distribution. We write

1−H
(
σ2

0

σ2
χ2

1−α(n− 1);n− 1

)
≥ 0.9

H

(
σ2

0

σ2
χ2

1−α(n− 1);n− 1

)
≤ 0.1

σ2
0

σ2
χ2

1−α(n− 1) ≤ χ2
0.1(n− 1)

χ2
0.1(n− 1)

χ2
1−α(n− 1)

≥ σ2
0

σ2

χ2
0.1(n− 1)

χ2
0.99(n− 1)

≥ 9

18
=

1

2
.

Going through Table 4, it can be seen that the above holds if n − 1 ≥ 60. Hence at least
n = 61 observations are required (note that Table 4 does not contain values for degrees of
freedom between 50 and 60, though). The probability of a Type II error if σ2 = 18 is

β = 1− π(σ2) = H

(
σ2

0

σ2
χ2

1−α(n− 1);n− 1

)
= H

(
9

18
χ2

1−α(n− 1);n− 1

)
= H

(
1

2
χ2

0.99(60); 60

)
= H(44.19; 60)

whose value is not in Table 5, but could be computed with the approximation given there
for large degrees of freedom.

Exercise 4
The pdf of X is f(x; p) = P(X = x) = p(1 − p)x−1 for x = 1, 2, . . ., since there are x − 1
unsuccessful tosses with probability (1− p)x−1 before the first successful toss with probability p.
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(a) For the probability of a Type I error we need the probability to reject when H0 is true. We
thus use p = 0.80, or

P(X ≥ 3 | p = 0.80) = 1− P(X = 1|p = 0.80)− P(X = 2|p = 0.80)

= 1− p(1− p)0 − p(1− p) = 1− p− p(1− p) = (1− p)2 = 0.202 = 0.04.

(b) We need the probability to not reject when p = 0.20 and p = 0.30. For general p, the
probability of a Type II error is

P(X < 3|p) = P(X = 1|p) + P(X = 2|p) = p(1− p)0 + p(1− p) = p+ p(1− p)
= p(2− p).

Denoting the probability of a Type II error by β, we have β = 0.20(2 − 0.20) = 0.36 and
β = 0.30(2− 0.30) = 0.51, for p = 0.20 and p = 0.30 respectively.

(c) Let us calculate the rejection probability for arbitrary p. We have

P
(
X ∈{1, 14, 15, . . .}

∣∣p) = P(X = 1|p) +

∞∑
x=14

P(X = x|p)

= p(1− p)0 +

∞∑
x=14

p(1− p)x−1 = p+ (1− p)13
∞∑
x=0

p(1− p)x

= p+ (1− p)13 p

1− (1− p)
= p+ (1− p)13,

using the following result on geometric series:
∑∞
k=0 ar

k = a
1−r for |r| < 1. We can find

the probability of a type I error by evaluating the expression above for p = 0.30, that is
0.30 + 0.7013 = 0.310. For the type II error we need the probability to not reject. So
denoting the probability of the type II error by β, we find

β = P(X /∈ {1, 14, 14, . . .}|p) = 1−
(
p+ (1− p)13

)
whenever p 6= 0.30. For p = 0.20, this gives β = 1− (0.20 + 0.8013) = 0.745. For p = 0.80,
we obtain β = 1− (0.80 + 0.2013) = 0.200.

Exercise 9

(a) We first compute the pooled variance estimate

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

8 · 36 + 8 · 45

16
= 40.5.

The t-statistic now takes the value t = ȳ−x̄
sp
√

1
n1

+ 1
n2

= 10−16√
40.5( 1

9 + 1
9 )

= −2. Under the null

hypothesis, this statistic follows a t-distribution with n1 +n2−2 = 9+9−2 = 16 degrees of
freedom. If t0.95 ≈ 1.756 denotes the 95% quantile of this distribution, then we will reject
if |t| > 1.756. We have −2 < −1.756 and therefore reject the null.

(b) From Equation (11.5.14) we estimate the degrees of freedom as

ν =

(
s2

1/n1 + s2
2/n2

)2
(s21/n1)

2

n1−1 +
(s22/n2)

2

n2−1

=
(36/9 + 45/9)

2

(36/9)2

8 + (45/9)2

8

= 15.805
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and compute the corresponding critical value by linear interpolation

t0.95 = t0.95(15) + 0.805
(
t0.95(16)− t0.95(15)

)
= 1.753 + 0.805(1.746− 1.753) = 1.747.

We will thus reject the null hypothesis if the absolute value of the observed test statistic
exceeds 1.747. A calculation of this test statistic gives

t0 =
ȳ − x̄√
s21
n1

+
s21
n2

=
10− 16√

36
9 + 45

9

= −2,

and we therefore reject the null hypothesis.

(c) The value of the test statistic is t0 = ȳ−x̄
sD/
√
n

= 10−16
9/
√

9
= −2. We should compare this

outcome with the 95% quantile of the t-distribution with (9 − 1) = 8 degrees of freedom.
The implied critical value is 1.860. Since | − 2| > 1.860 we reject the null hypothesis.

(d) We use Theorem 12.3.4. We compute the test statistic as f0 =
s21
s22

= 36
45 = 0.8. If we

let f1−α(n2 − 1, n1 − 1) denote the (1 − α)-quantile of the F -distribution with (n2 − 1)
and (n1 − 1) degrees of freedom, then we should reject whenever f0 ≤ 1

f1−α
. We find

1
f0.95

= 1
3.44 = 0.29 and do not reject H0.

(e) We have to derive the power function at
σ2

2

σ2
1

= 1.33. For general
σ2

2

σ2
1
, we find

π

(
σ2

2

σ2
1

)
= P

(
S2

1

S2
2

≤ 1

f1−α

∣∣∣∣ σ2
2

σ2
1

)
= P

(
S2

1

S2
2

σ2
2

σ2
1

≤ 1

f1−α

σ2
2

σ2
1

∣∣∣∣ σ2
2

σ2
1

)
= P

(
[(n1 − 1)S2

1/σ
2
1 ]/(n1 − 1)

[(n2 − 1)S2
2/σ

2
2 ]/(n2 − 1)

≤ 1

f1−α

σ2
2

σ2
1

∣∣∣∣ σ2
2

σ2
1

)
= P

(
F (n1 − 1, n2 − 1) ≤ 1

f1−α

σ2
2

σ2
1

)
,

where F (n1 − 1, n2 − 1) denotes an F -distributed random variable with (n1 − 1, n2 − 1)

degrees of freedom. After calculating 1
f1−α

σ2
2

σ2
1

= 0.387 we find this probability to be equal

approximately 0.1.

Exercise 11

(a) We use the Neyman-Pearson Lemma, Theorem 12.6.1 from B&E. We should reject the

nulll hypothesis when λ(x; 1, 2) = f(x;1)
f(x;2) = 1

2x is small, or equivalently for large x. To find

the most powerful test with significance level α, we require that

P(X ≥ c|θ = 1) =

∫ 1

c

f(x; 1)dx = 1− c = α.

The most powerful critical region of size α for testing H0 : θ = 1 versus Ha : θ = 2 is thus
C∗ = {x |x ≥ 1− α}. For the given significance level we would reject when x > 0.95.

(b) The power function is

π(θ) = P(X ≥ 0.95|θ) =

∫ 1

0.95

f(x; θ)dx = xθ
∣∣1
0.95

= 1− (0.95)θ.

For θ = 2 we have π(2) = 1− 0.952 = 0.0975.
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(c) The joint pdf of X1, . . . , Xn =
∏n
i=1 θx

θ−1
i = θ2 (

∏n
i=1 xi)

θ−1
and hence

λ(x1, . . . , xn; 1, 2) =
1

2n
∏n
i=1 xi

.

We should reject the null hypothesis for small values of λ(x1, . . . , xn; 1, 2). This coin-
cides with large values of

∏n
i=1 xi. The distribution of

∏n
i=1Xi is difficult to establish.

However, we can apply additional monotone transformations. Note that rejection for
large

∏n
i=1 xi is equivalent to rejection for large

∑n
i=1 ln(xi), is equivalent to rejection

for small
∑n
i=1− ln(xi). This will turn out to be helpful because if X has pdf f(x; θ), then

Y = − ln(X) had pdf

fY (y) = fX(e−y) | − e−y| = θ
(
e−y
)θ−1

e−y = θe−θy, y > 0.

Apparently, Y is EXP(1/θ) distributed and thus −2θ
∑n
i=1 ln(Xi) = 2nȲ

1/θ ∼ χ
2(2n). Since

we agreed to reject for small values of
∑n
i=1− ln(xi), we compute the critical value from

P

(
−

n∑
i=1

lnXi ≤ c

∣∣∣∣∣ θ = 1

)
= P

(
−2

n∑
i=1

lnXi ≤ 2c

)
= α.

We find c = χ2
α/2, where χ2

α denotes the 100α% quantile of the χ2(2n) distribution. The
most powerful critical region of size α for testing H0 : θ = 1 versus Ha : θ = 2 is thus

C∗ =
{

(x1, . . . , xn)
∣∣∣−∑n

i=1 lnxi ≤ χ2
α

2

}
.

Exercise 12

(a) We use the Neyman-Pearson Lemma, Theorem 12.6.1 from B&E. Using the pdf f(x;µ) =
e−µµx

x! we find

λ(x;µ0, µ1) =
e−µ0µx0
x!

e−µ1µx1
x!

= eµ1−µ0

(
µ0

µ1

)x
.

We should reject when λ(x;µ0, µ1) is small, or equivalently when

eµ1−µ0

(
µ0

µ1

)x
≤ k1 ⇒

(
µ0

µ1

)x
≤ k1

eµ1−µ0
= k2 ⇒ x ln

(
µ0

µ1

)
≤ ln(k2) = k3

⇒ x ≥ k3

ln
(
µ0

µ1

) = c,

where k1, k2, k3 and c are the constants to be determined to control size. Also note that
ln(µ0/µ1) < 0 because µ1 > µ0 is given in the exercise. To obtain the correct significance
level we should define the rejection region such that P(X > c|µ = µ0) = 1− F (c;µ0) = α.
The critical value c is thus F−1(1− α;µ0). The most powerful critical region of size α for
testing H0 : µ = µ0 versus Ha : µ = µ1 is thus C∗ =

{
x
∣∣x ≥ F−1(1− α;µ0)

}
.

(b) The joint pdf of X1, . . . , Xn is f(x1, . . . , xn;µ) =
∏n
i=1

e−µµxi

xi!
= e−nµµ

∑n
i=1 xi

(
∏n
i=1 xi!)

. We find

λ(x;µ0, µ1) =

e−nµ0µ
∑n
i=1 xi

0

(
∏n
i=1 xi!)

e−nµ1µ
∑n
i=1

xi
1

(
∏n
i=1 xi!)

= en(µ1−µ0)

(
µ0

µ1

)∑n
i=1 xi

.
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We should reject when λ(x;µ0, µ1) is small, or equivalently when

en(µ1−µ0)
(µ0

µ1

)∑n
i=1 xi ≤ k1 ⇒

(
µ0

µ1

)∑n
i=1 xi

≤ k1

en(µ1−µ0)
= k2

⇒

(
n∑
i=1

xi

)
ln

(
µ0

µ1

)
≤ ln(k2) = k3 ⇒

(
n∑
i=1

xi

)
≥ k3

ln
(
µ0

µ1

) = c,

where k1, k2, k3 and c are the constants to be determined to control size. If X1, . . . , Xn ∼
POI(µ), then

∑n
i=1Xi ∼ POI(nµ) (see Example 6.4.5). To obtain the correct signifi-

cance level we should define the rejection region such that P(
∑n
i=1Xi > c |µ = µ0) =

1 − F (c;nµ0) = α. The critical value c is thus F−1(1 − α;nµ0). The most power-
ful critical region of size α for testing H0 : µ = µ0 versus Ha : µ = µ1 is thus C∗ ={

(x1, . . . , xn)
∣∣∑n

i=1 xi ≥ F−1(1− α;nµ0)
}

.

Exercise 16
Suppose we would test H0 : θ = θ0 versus Ha : θ = θ1 with θ1 > θ0. Having simple hypothesis
we could now use the Neyman-Pearson Lemma, Theorem 12.6.1 from B&E. We would get the
joint pdf

f(x1, . . . , xn|θ) =

n∏
i=1

3x2
i

θ
e−x

3
i /θ =

3n

θn

(
n∏
i=1

xi

)2

e−
1
θ

∑n
i=1 x

3
i

and

λ(x1, . . . , xn; θ0, θ1) =

3n

θn0
(
∏n
i=1 xi)

2
e−

1
θ0

∑n
i=1 x

3
i

3n

θn1
(
∏n
i=1 xi)

2
e−

1
θ1

∑n
i=1 x

3
i

=

(
θ1

θ0

)n
e( 1
θ1
− 1
θ0

)
∑n
i=1 x

3
i .

The null hypothesis should be rejected if(
θ1

θ0

)n
e

(
1
θ1
− 1
θ0

)∑n
i=1 x

3
i ≤ k1 ⇒ e

(
1
θ1
− 1
θ0

)∑n
i=1 x

3
i ≤ k1

(
θ0

θ1

)n
= k2

⇒
(

1

θ1
− 1

θ0

) n∑
i=1

x3
i ≤ ln k2 = k3 ⇒

n∑
i=1

x3
i ≥

k3
1
θ1
− 1

θ0

= c,

where k1, k2, k3 and c are the constants to be determined to control the Type I error. We have
to find the distribution of

∑n
i=1X

3
i . Let X have pdf f(x; θ), then Y = X3 has the pdf

fY (y) = fX

(
y

1
3

) ∣∣∣∣13y− 2
3

∣∣∣∣ =
3y

2
3

θ
e−

y
θ

1

3
y−

2
3 =

1

θ
e−

y
θ , y > 0.

We conclude that Y ∼ EXP(θ) and realize that 2
θ

∑n
i=1X

3
i = 2nȲ

θ ∼ χ2(2n). Size control
requires

P

(
n∑
i=1

X3
i ≥ c

∣∣∣∣∣ θ = θ0

)
= P

(
2

θ0

n∑
i=1

X3
i ≥

2c

θ0

)
= α,

or 2c
θ0

= χ2
1−α, hence c =

θ0χ
2
1−α
2 , where χ2

1−α denotes the 100(1 − α)% quantile of the χ2(2n)
distribution. The most powerful critical region of size α for testing H0 : θ = θ0 versus Ha : θ = θ1

(where θ1 > θ0) is thus C∗ =
{

(x1, . . . , xn)
∣∣∣∑n

i=1 x
3
i ≥

θ0χ
2
1−α
2

}
. Since the critical region C∗
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does not depend on a specific value of θ1 > θ0, it corresponds to a uniformly most powerful test
for H0 : θ = θ0 against Ha : θ > θ0.

Exercise 17

(a) We first consider H0 : σ = σ0 and Ha : σ = σ1 with σ1 > σ0. We use the Neyman-Pearson
Lemma, Theorem 12.6.1 from B&E. The joint pdf

f(x1, . . . , xn;σ) =

n∏
i=1

1√
2πσ2

e−
x2
i

2σ2 = (2πσ2)−n/2e−
1

2σ2

∑n
i=1 x

2
i ,

and

λ(x1, . . . , xn;σ0, σ1) =
(2πσ2

0)−n/2e
− 1

2σ2
0

∑n
i=1 x

2
i

(2πσ2
1)−n/2e

− 1

2σ2
1

∑n
i=1 x

2
i

=

(
σ1

σ0

)n
e

(
1

2σ2
1
− 1

2σ2
0

)∑n
i=1 x

2
i
.

H0 is rejected if λ(x1, . . . , xn;σ0, σ1) is too small, or equivalently,(
σ1

σ0

)n
e

(
1

2σ2
1
− 1

2σ2
0

)∑n
i=1 x

2
i ≤ k1 ⇒ e

(
1

2σ2
1
− 1

2σ2
0

)∑n
i=1 x

2
i ≤ k1

(
θ0

θ1

)n
= k2

⇒
(

1

2σ2
1

− 1

2σ2
0

) n∑
i=1

x2
i ≤ ln k2 = k3 ⇒

n∑
i=1

x2
i ≥

k3
1

2σ2
1
− 1

2σ2
0

= c

where k1, k2, k3 and c are the constants to be determined to control the Type I error. If

X1, . . . , Xn ∼ N(0, σ2), then
∑n
i=1 X

2
i

σ2 ∼ χ2(n). We can thus control the probability of a
Type I error by requiring

P

(
n∑
i=1

X2
i ≥ c

∣∣∣∣∣σ = σ0

)
= P

(∑n
i=1X

2
i

σ2
0

≥ c

σ2
0

)
= α.

This implies c
σ2

0
= χ2

1−α or c = σ2
0χ

2
1−α, where χ2

1−α denotes the 100(1 − α)% quantile of

the χ2(n) distribution. The most powerful critical region of size α for testing H0 : σ = σ0

versus Ha : σ = σ1 (where σ1 > σ0) is thus C∗ =
{

(x1, . . . , xn)
∣∣∑n

i=1 x
2
i ≥ σ2

0χ
2
1−α

}
.

Since the critical region C∗ does not depend on a specific value of σ1 > σ0, it corresponds
to a uniformly most powerful test for H0 : σ = σ0 against Ha : σ > σ0.

(b) The power function is

π(σ) = P

(
n∑
i=1

X2
i ≥ σ2

0χ
2
1−α

∣∣∣∣∣σ
)

= P
(∑n

i=1X
2
i

σ2
≥ σ2

0

σ2
χ2

1−α

∣∣∣∣σ) = 1−H
(
σ2

0

σ2
χ2

1−α;n

)
,

where H(x;n) denotes the CDF of the χ2(n) distribution.

(c) π(4) = 1−H
(

1
4χ

2
0.995; 20

)
= 1−H(10.00; 20) = 1− 0.032 = 0.968.

Exercise 27
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(a) The joint distribution of X1, . . . , Xn is f(x; θ) =
∏n
i=1

1
θ e
−xi/θ = θ−ne−nx̄/θ. If the null is

true, then θ has to equal θ0. The unrestricted ML estimate is θ̂ = x̄ (see Example 9.2.7).
This implies

λ(x) =
maxθ∈Ω0 f(x; θ)

maxθ∈Ω f(x; θ)
=
f(x; θ0)

f(x; θ̂)
=
θ−n0 e−nx̄/θ0

x̄−ne−n
=

(
x̄

θ0

)n
en(1− x̄

θ0
),

and

−2 ln
(
λ(x)

)
= −2n

(
1− x̄

θ0
+ ln

(
x̄

θ0

))
.

The null hypothesis imposes 1 restriction on the parameter space. According to Equation
(12.8.3), an approximate size α test is to reject H0 if

−2n

(
1− x̄

θ0
+ ln

(
x̄

θ0

))
≥ χ2

1−α(1).

(b) The parameter space is Ω = [θ0,∞). There is still only the single parameter value θ0

possible under the null. We now compute the ML estimate for θ ∈ [θ0,∞). From part
(a) we have the likelihood L(θ) = θ−ne−nx̄/θ which implies the log-likelihood lnL(θ) =
−n ln(θ)− nx̄

θ . The first derivative is

d

dθ
lnL(θ) = −n

θ
+
nx̄

θ2
= − n

θ2
(θ − x̄) =

{
− if θ > x̄

+ if θ < x̄.

For this we conclude that the maximum will equal x̄ when θ0 < x̄, or θ0 when θ0 > x̄. We
conclude that

λ(x) =
maxθ∈Ω0 f(x; θ)

maxθ∈Ω f(x; θ)
=

{(
x̄
θ0

)n
en(1− x̄

θ0
) if x̄/θ0 > 1,

1 if x̄/θ0 < 1.

Now recall that we should reject the null hypothesis for small values of λ(x) where ‘small’
should be quantified based on the maximum probability of a Type I error. Under the null,
we have

P(λ(X) < 1|θ0) = P(X̄/θ0 > 1|θ0) = P
(

2nX̄

θ0
> 2n

∣∣∣∣ θ0

)
= P

(
χ2(2n) > 2n

)
= 1− P

(
χ2(2n) ≤ 2n

)
.

From Table 5 in the Appendix C of B&E we can see that this probability varies around
50%. For typical sizes (say 1%, 5%, 10%) we will thus find ourselves in the case where
x̄/θ0 > 1. We will thus assume that α < P(λ(X) < 1|θ0) (and thus x̄/θ0 > 1).

The rejection regions are of the following forms(
x̄

θ0

)n
en(1− x̄

θ0
) ≤ k ⇒

(
x̄

θ0

)
e(1− x̄

θ0
) ≤ k1/n = k1 ⇒

(
x̄

θ0

)
e−

x̄
θ0 ≤ k1e

−1 = k2,

where k, k1 and k2 are the constants to be determined to control the Type I error. To

analysis the inequality
(
x̄
θ0

)
e−

x̄
θ0 ≤ k2 in more detail, we define the function f(y) = ye−y

such that f
(
x̄
θ0

)
=
(
x̄
θ0

)
e−

x̄
θ0 .
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Note that
d

dy
f(y) = e−y − ye−y = (1− y)e−y.

The function f(y) is thus decreasing for y > 1 and returning to the problem at hand we

also have that
(
x̄
θ0

)
e−

x̄
θ0 is decreasing for

(
x̄
θ0

)
> 1 (our case of interest, i.e. the case when

λ(x) < 1). Low values of f
(
x̄
θ0

)
=
(
x̄
θ0

)
e−

x̄
θ0 are thus achieved by high values of x̄

θ0
, see

Figure 1 below.

Figure 1: A visualization of the function f(y).

We conclude that(
x̄

θ0

)
e−

x̄
θ0 ≤ k1e

−1 = k2 ⇒ x̄

θ0
≥ k3 ⇒ 2nx̄

θ0
≥ 2nk3 = c,

where k3 and c are constant to be determined to control the Type I error. Under the null
hypothesis we have 2nX̄

θ0
∼ χ2(2n), therefore

P
(

2nX̄

θ0
≥ c
∣∣∣∣ θ0

)
= α ⇒ c = χ2

1−α(2n).

For typical sizes, the GLR test of size α has critical region

C∗ =

{
x1, . . . , xn

∣∣∣∣ 2nx̄

θ0
≥ χ2

1−α(2n)

}
.

Exercise 29
We have X1, . . . , Xn ∼ UNIF(0, θ). The joint pdf is

f(x; θ) =

n∏
i=1

1

θ
1 {xi ≤ θ} = θ−n1

{
max

i=1,...,n
xi ≤ θ

}
.

If the null is true, then θ = θ0, whereas the unrestricted ML estimate is θ̂ = max1,...,n xi. We
have

λ(x) =
maxθ∈Ω0

f(x; θ)

maxθ∈Ω f(x; θ)
=
f(x; θ0)

f(x; θ̂)
=

(
max1,...,n xi

θ0

)n
1

{
max

i=1,...,n
xi ≤ θ0

}
.
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We should reject the null hypothesis when λ(x) is small. The most extreme situation occurs
when λ(x) = 0 because maxi=1,...,n xi exceeds θ0. If this happens, then we know for sure that
we should reject the null hypothesis because the event {maxi=1,...,n xi > θ0} cannot occur if
X1, . . . , Xn ∼ UNIF(0, θ0). Actually, there is not really any reason to conduct a hypothesis test
because we are certain that our null hypothesis H0 : θ = θ0 is false as soon as we observe a
maximum outcome larger than θ0. So let us rule out this scenario, and continue to see what is
happening under H0.

Under H0, we have X1, . . . , Xn ∼ UNIF(0, θ0) and we must have 1 {maxi=1,...,nXi ≤ θ0} = 1
with probability one. Rejection for small values of λ(x) is thus equivalent to rejecting for small
values of max1,...,n xi. Denoting the critical value by c, we must have

P
(

max
i=1,...,n

Xi ≤ c
∣∣∣∣ θ0

)
= P (X1 ≤ c, . . . ,Xn ≤ c | θ0) =

[
P(X1 ≤ c | θ0)

]n
=

(
c

θ0

)n
= α.

to control for the probability of a Type I error. We conclude that c = θ0 α
1/n. The GLR test of

size α has critical region

C∗ =

{
x1, . . . , xn

∣∣∣∣ max
i=1,...,n

xi ≤ θ0 α
1/n

}
.

Exercise 31
The joint pdf of the sample is f(x; θ) =

∏n
i=1 θx

θ−1
i = θn (

∏n
i=1 xi)

θ−1
. Under H0 we have only

a single parameter value. It remains to compute the unrestricted estimator. The likelihood is

L(θ) = θn (
∏n
i=1 xi)

θ−1
and log-likelihood is

lnL(θ) = n ln(θ) + (θ − 1)

n∑
i=1

ln(xi).

The first and second derivative of the log-likelihood with respect to θ are

d

dθ
lnL(θ) =

n

θ
+

n∑
i=1

ln(xi),

d2

dθ2
lnL(θ) = − n

θ2
< 0, for all θ.

We obtain θ̂ = − n∑n
i=1 ln(xi)

(the second order condition is automatically fulfilled). The GLR

evaluates to

λ(x) =
maxθ∈Ω0

f(x; θ)

maxθ∈Ω f(x; θ)
=
f(x; θ0)

f(x; θ̂)
=

θn0 (
∏n
i=1 xi)

θ0−1

(θ̂)n (
∏n
i=1 xi)

θ̂−1
=

(
θ0

θ̂

)n( n∏
i=1

xi

)θ0−θ̂
,

and we can additionally compute

−2 ln
(
λ(x)

)
= −2n ln

(
θ0

θ̂

)
− 2(θ0 − θ̂)

n∑
i=1

ln(xi)

= −2n ln

(
θ0

θ̂

)
+ 2n

(
θ0 − θ̂
θ̂

)
,
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where we have used the definition of θ̂ to replace
∑n
i=1 ln(xi). According to Equation (12.8.3),

an approximate size α test is to reject H0 if

−2 ln
(
λ(x)

)
= −2n ln

(
θ0

θ̂

)
+ 2n

(
θ0 − θ̂
θ̂

)
≥ χ2

1−α(1).
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