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Exercise 1

(a) First population moment can be calculated as

1 1 9 1 0
E(X):/ xezc“)*ldx:/ 020 dx = mx”l =T
0 0 0

Equate it to the first sample moment and solve the equation to obtain the MME 6:

] _ -
— =X = 0= =.
0+1 1-X

(b) We again calculate E(X). The calculation shows

0+1 o 6+1
AN A

E(X) = /1 (04 1) 2dr = /1 (0+1)x " tde = ) 9

1

Equate it to the first sample moment and solve the equation to obtain the MME 0:

0+1 = 1
7~:X :> 9:—7.
0 X -1

oz
1/0

(¢) The pdf corresponds to a GAM(1/6, 2) distribution since f(x;0) = 0%2xe % = ng)xe
We can find the population moment E(X) = % from Table B.2. Equate it to the first sample
moment and solve the equation to obtain the MME 6:
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Exercise 3

(a) The likelihood function is L(#) = [[;—, f(=i;0) = 6™ (I, 2;)" 7" and the associated log-
likelihood is .
InL(@) =nlnf+ (0 —1) Zln(mi).
i=1
The first and second derivative of the log-likelihood are:
d d?

O n
CmL0) =2+ In(z), —=WL() = <0.
e (9) 9—|—i:1 n(xz;) 2z 10 (0) 92<0



The second derivative is negative for all values of §. We can thus solve the first order

condition to find the estimator § = —W.
i=1 i

(b) The likelihood function is L(0) =[]\, f(z:;6) = (0+1)" ([1;-, ;) "% and the associated
log-likelihood is

InL(#) =nln@+1) — (0 +2) iln(aci).

The first and second derivative of the log-likelihood with respect to 6 are

n 2

d n n
Cmpd) =" S I(z), L) = .
a8 O = 5 ;n(x) g5z W EO) =~y <O

The second derivative is negative for all values of §. We can thus solve the first order
condition to find the estimator 6 = W —1.
i=1 ®

(c) We have the likelihood function L(0) = []\_, f(24;0) = 6% ([[}_, 2;) e %=1 and log-
likelihood function

InL(0) = 2nIn(0) + » _In(z;) — Onz,
i=1
where we used Z = 1 3" | 2;. The first derivative is d% InL(#) = 2 —nt. Solving the
first order condition, i.e. %" — 3", x; =0, gives the candidate solution 6 = 2/z. For the
second derivative we have P2
2n

for all §. We conclude that the maximum likelihood estimator is § = 2/X.

<0,

Exercise 5
For the given pdf, the likelihood function equals

n -3
L(0) =[] f(xi;0) = 2"6*" (H 3:1-) , 0<0<a, = min ;.
=1

. 1<i<n
=1

This likelihood is strictly monotonically increasing in # and we would correspondingly like to
take 0 as large as possible. However, due to the restriction 0 < 6 < z;.,, the likelihood will be
zero whenever 6 exceeds x1.,. It follows that the ML estimator is 8 = Xj.,.

Exercise 7

All the quantities in exercises (a)-(c) are transformations of p. We will thus first derive the MLE
for the parameter p and subsequently use the invariance property. First the derivation of the
likelihood function

n

L(p) = [[ fas;p) = p" (1 — p)=i=r®" = p"(1 — p)" "1,
i=1

(using the definition of Z) and log-likelihood function

In L(p) =nln(p) + n(Z — 1) In(1 — p).



The first derivative of the log-likelihood function is

d n n(x-—1)
—InLp =————=0.
a (p) 1

We can find a candidate solution for the MLE by setting this first derivative equal to zero, that

1S _ 1
non@E=l o L 5o
p I—p

It remains to verify whether our candidate solution indeed gives a maximum. For this we should
show that %22 In L(p)‘ 5 < 0. By differentiation we find

SR

d2
@ In L(p)

2 —p)2 T —
p=p p (1-p) p=p z -1

since z € {1,2,3,...} hence T > 1 (we rule out the case when we observe a sample of only ones
because this gives no information about the parameter). The ML estimator is thus p = % The
subquestions are now quick to answer using the Invariance Property of MLEs (Theorem 9.2.2 on
page 298 of B&E).

)

(a) 7(p) =E(X) = %, hence the MLE is 7(p) = % =

(b) 7(p) = Var(X) = -2, hence the MLE is 7(p) = 3£ = X(X — 1)

ﬁ2
(c) Z(p) =P(X > k) = (1 - p)*, hence the MLE is 7(p) = (1 — p)* = (1 — %)k for arbitrary
—1,2,...

Exercise 15

(a) If X ~ BIN(n,p), then E(X) = np and Var(X) = np(1 — p) (see Table B.2). We have

E [cp(1 —p)] =E [Cf <1X>} _‘g {XXz] _ % [E(X) E(Xz)}

= ¢ (IEJ(X) _ Var(X) + (]E(X))2> _c (np— np(l —p) + (np)2>
= %(np—p(l -p) —np2) = %(np(l —p)—p(1 —p)) o),

E [Cﬁ(l - 13)] = p(1 — p) will hold when ¢ = -2~

n—1"
(b) Note that Var(X) = np(1 — p). In view of the previous exercise we obtain the unbiased

estimator n”—jlp(l - D).

(¢) We now have a random sample X1, ..., Xy ~ BIN(n,p). The fact that E(X) = np suggest

the estimator p* = —% "N X;. The following calculation shows that this is indeed an
unbiased estimator:

. 1 & 1
E(p*) =E (nN l_lez> = WZE(XZ’) = 7 NV(np) = p.

i=1



Similarly, an unbiased estimator for Var(X) = np(1 — ) is easily constructed using the

answer to part (a). Defining the estimator as Var(X) = 5 El = Xi(
N N
1 n? X; 1 n? X; X;
E@f ): — 1-20) ) ==K 21— 20} = Var(X).
ar(X <Nz_: ( n)) N; (n—ln ( n)) ar(X)

Exercise 17

) we have

(a) Sin(_je X ~ UNIF(G — 1,9 +;|.), we have E(X) — % — 0 (See Table B2) and also
E(X)= 13" E(X;) =0. X is thus an unbiased estimator for 6.

(b) The pdf of the uniform distribution UNIF(6 — 1,0 + 1) is
1
fao) =5 0-1<z<6+1

and the CDF is

0 r<60-1
F(x;0) = =4+ f-1<z<0+1
1 r>0+1

(see page 109). Using Theorem 6.5.2 (page 217 of B&E), we see that the pdfs of the order
statistics Xi., and X,,.,, are

a1(z) = n(l — F(z))" ' f(z) = %(9+ 1 —x)"_l f—1<z<O+1

gn(z) =n(F(x))" ' f(z) = (x—@—!—l) —1<z<O+1,

2n

respectively. First, we calculate E(X7.,):

0+1 n 9 n
IE(*Xl:'n) :/ 1'27(94-1 )n_ld{)j:/ (9+1_y)27yn—1dy
6—1 0

2n 2
—(—1)+ ——
n+1 ( )+n+1’

2
:(9+1)—/ %y"dy:(e—i—l)—
0

by changing the integration variable to y = 8§ + 1 — z. In other words, X7., is on average
~ +1 higher than the lower bound 6 — 1. Second, for E(X,,.,), we have

-1, )
E(Xpn) = / Ton (x—04+1)""dx = / (z+0-— 1) 2"z
6—1

2n 2
=(0-1) —"d— 0—1 =0+1)— —,
after changing the integration variable to z = x — 6 + 1. We see that X,,.,, is lower than
the upper bound 6 + 1 by (the same quantity as before). Finally, by linearity of the
expectation, we have

2
n+1

2 B 2 2 -

and we see that the “midrange” is indeed an unbiased estimator for 6.



Exercise 21

(a) If X ~ BIN(1, p), then E(X) = p and Var(X) = p(1—p) (see Table B.2). For the numerator
of the CRLB, we have 7(p) = p and thus 7/(p) = 1. The following calculations can be used
to evaluated the expectation in the denominator:

flap) =p*(1—p)'"

In f(z; p)—xlnp—i—(l—x)ln(l— D)

0 l-z  xz-—p

ap ) = T, T sy

90 rx 2: X—p QZIE(X—p)ZZ Var(X) _ 1
E(apl f(X’p)> E(P(l—l))) p(1=p3 p*(1-p?* p(l-p)
The CRLB is now obtained as
[ (p))? _ 1 p(l-p)
2 n :
]E(a%lnf(X;p)) p(1-p) "

(b) Only the numerator of the CRLB will change. We now have 7(p) = p(1 — p) such that
7'(p) =1 — 2p. The CRLB is

[T (p)]? _ (=2 p(1-p)(1-2p)*

2 n
nE(Zmf(Xip)) 0D "

(¢) Looking at your answer for part (a) you should recognize that the CRLB coincides with

Var(X)/n. As an educated guess we therefore try p = X. First, from E(X) = p, we see

that
. 1 & 1 &
—E<H;Xi> :E;E(X):

and conclude that X is an unbiased estimator for p. The variance from this estimator, i.e.

Var(p) = Var ( ZX) - Zn:Var(Xi) = p(ln—p)

is seen to attain the CRLB. We conclude that p = X is an UMVUE of p.

Exercise 22

(a) For the numerator of the CRLB, we find 7(u) = p and 7/(p) = 1. The next intermediate
steps can be used to evaluated the expectation in the denominator:

f(l',/,{,) = \/21—7_‘_367%
In (o) =~ n(v/33) — 10

18

0 T — [
71 N =
o n f(2; p)

Ne




The CRLB is now obtained as
[T ()]?
nE (% In f(X

=
~
%

©o|3| —

(b) The expectation and variance of i are

E(p) =E (izxz> = %ZE(XD =t
Var(i1) = Var (711 ZXZ> = % ZVar(Xi) = %

i=1
The final expression for the expectation shows that i is an unbiased estimator for y. Since
the variance of i also attains the CRLB, we can conclude that & is an UMVUE for p.

(¢) The 95% percentile of X ~ N(u,9) can be written as 7(u) = p + 32095, since Z =

% ~ N(0,1) (remember that zg.95 denotes the 95% percentile of the standard normal

distribution). By the invariance property 7'( ) = X +320.95 is the MLE of 7(). In addition,
7/(p) = 1 implies that the CRLB remains 2. Since

E (T(ﬂ)) = 320.95 + E(X) = 320.95 +u= T(/j/)
and .
A\ Var(X) = =
or () = Var(%) = 2,
it follows that 7(ji) = 320.95 + X is an UMVUE of ().

Exercise 23
(a) We first have to derive the MLE for §. We proceed with the usual steps. The likelihood
n 2
function is L(0) = [[j_, f(z:;0) = (270) "/ exp (—%%) and therefore

E?:l 1‘12

In L(0) = fg In(27) — gln(e) - =

We subsequently compute the first two derivatives as

d _n Z?:l xf
d? n S x?
a0 =5 - =G

If we equate the first derivate to zero and solve for the estimator, then we find § =
1 ZZ L 2. The second order condition is fulfilled because

2

do?

n nb n

— = <
0= 202 63 262
The MLE for 6 is thus § = % >or X2 From

) E(ii){f) ZE (X2) = ZVar

we see that this estimator is unbiased for 6.

In L(6)




(b) Starting from f(X;0) = \/T exp( g;), we find

2
In f(X;0) = —% In(27) — %ln(@) - )2(—9,

and by steps similar to those in part (a), the second derivatie w.r.t. 6 becomes

0? 1 X2

Note that X/v6 ~ N(0,1), and thus XTQ ~ x?(1). Using the latter result, we have
—E 892 In f(X; 9)} = %E (XTZ) — ﬁ = ﬁ and a CRLB evaluating to

(o[ Lomsera]) -2,

The variance of 0 is

0 <~ X;\° 62 62 262
Var Var ( ZX2> = Var (n Z <\/§) > = ﬁVar(Yn) - E(Qn) = 77

=1

2
where we made use of the random variable Y, = > 7" X2 = Y| ( \)55) . Since

X;/V6 ~ N(0,1), we know that this Y,, is the sum of squared (and independent) stan-
dard normal random variables. Therefore, Y,, ~ x?(n) and Var(Y,,) = 2n. The estimator
0 is thus unbiased (see (a)) and its variance attains the CRLB. We conclude that 0 is an
UMVUE for 6.

Exercise 26

(a) The likelihood function is

1
:Hf(zlag):%a 0<1:1n—11<nl£n$27 In:nzlrgiagxnxige-

L(0) is strictly decreasing in 6, so L(6) is maximal if 0 is minimal. However, the restriction
Zn:n < 0 implies that we should not decrease 6 below the value z,,.,, (otherwise the likelihood
would become zero). It follows that 8 = X,,.,,.

(b) The given pdf corresponds to the UNIF(0,6) distribution. If the random variable X his
this particular uniform distribution, then E(X) = 6/2. The estimator follows from:

NSNS

X — = 0=2X.

(c) The CDF related to the UNIF(0, 6) distribution is

<0
O<x<¥d
x> 0.

F(z;0) =

—olg O©



The pdf of the order statistic X,,.,,, cf. Theorem 6.5.2 (page 217 of B&E), is thus equal to

gulw) = n(F(@)"" f@) = gra™™', 0<a <0,

(and zero elsewhere). We can now find E(X,,.,) by integration,

6
~ n n T
E(f) =E(Xpn) = | —adv=_— ——

n+1 0 n

O:n—i—l

0 +£ 0,

which reveals that the MLE # is biased.

(d) Use E(X) = ¢ and linearity of the expectation operator to find

E(0) =E(2X) =E (Zix) = %iE(X):

We now see that MME 6 is unbiased.

(€) Let us start with the MLE 6. We have MSE(8) = E (X,.,—0)” = E(X2,,) =20 E(X,,.,)+62.
We have computed E(X,,.,) in part (c), so it remains to compute the second moment of
the estimator. The calculation shows

41 n+2 n )
— " dx 0.
/ n? 9" n—|—2 n—|—2

We can now evaluate the expression from before. We find

D g2 + 62 = W .
n+2 —l—l (n+1)(n+2)

MSE(§) =

We continue with the method of moments est%mator 6. This estimator was unbiased such
that MSE() = Var(f). Since Var(X) = %, we can easily compute this variance by
exploiting the standard properties of variances, namely

~ - n 62
MSE(f) = Var(f) = Var(2X) = Var ( ZX ) = ;Var(){i) =3
The MSE of both estimator scales linearly with 62 (which is expected because this is the
scale parameter). More interesting is the behavior as a function of n. The MLE will have
a smaller (or equal) MSE, that is MSE(f) < MSE(6), when

202 62

GiDmTY Sam T mosnt2=@m-Di-2)20

The parabolic function f(z) = (z — 1)(z — 2) intersect the z-axis in the points z = 1 and
x = 2. We therefore conclude that the MLE for § has an MSE that is never higher than
the MSE of the MME (for any sample size n = 1,2,...).

Exercise 31 R
The MSEs for 6 and 6 were computed in Exercise 26. According to Definition 9.4.2 (page 312 in
B&E) we only have to take the limit n — oo.



(a) limg, o0 MSE(én) = lim, o0 % =0, hence 6,, = X,,.,, is MSE consistent for 6.

(b) limy 00 MSE(én) = lim, 00 % =0, hence 6,, = 2X,, is MSE consistent for 6.

Exercise 32 .
In Exercise 5 we have seen that 0, = X1.,. From [ 26%t=3dt = —92t’2|g =1-6%2"2, we find

the following CDF for 0:
0 z <0

F(:6) = { 1—6%2x2 0 < x.
The related pdf for the estimator 6 is!
g1(x) =n(l — F(z))" ' f(z) = 2ne? "z~ ! 0<u,

and zero otherwise. We can now compute the probability stated in Definition 9.4.1 (page 311 in
B&E) explicitly:

0+
P10, 0 <e)=P (X1 —0<e) =P (X1, <0+¢) = / 2n0*" x> da
0

2n
on __—on|0te 2n —2n __ 4
= —0""x }9 =1-6""(0+¢) —1—(9+€> .

Since 0 < (ﬁ) < 1 for any € > 0, we obtain lim,,_,, P (|9n —-0| < s) = 1 thereby showing that

the MLE én = X.,, is (simply) consistent for 6.

1The CDF for X1., isP(X1.p <) = 1-P(X1.p > 2) = 1-P(X1 > 2, X0 > 2,...,Xp > 1) = 1-TT, P(X; >
z) =1 —[1 — F(2)]". By differentiation w.r.t. = we find g1(z) = n(1 — F(z))" "1 f(z).



Exercise 33

(a) If X ~ POI(u), then E(X) = Var(X) = pu (see Table B.2). For the numerator of the
CRLB, 7(p) = p yields 7/(1) = 1. The following calculations can be used to evaluated the
expectation in the denominator:

e“u

[z p) =
In f(z;p) = f,quxlnu In(z!)
T —
W

<1nf (X p) ( )2 _ E(XH; W _ Va;(zX) _ %

—lnf(ac,u) —1+f =

The CRLB is thus equal to

Gl )
B (o 0X:00)

eI
3}?

(b) The denominator of the CRLB remains unchanged. But now 6 = 7(u) = e™#, hence
7/(1n) = —e~*. The new CRLB is thus

) (e e
2 n - n .
E (& /(X)) T
(¢) The CRLB for p has the form Var(X)/n. The sample mean is therefore a promising

candidate for an UMVUE. We compute mean and variance of our candidate estimator
= X and find

: :E(;ixi)zjjm
Var(1) = Var ( ZX) 2 iVar(X
i=1

From E(f1) we see that f is an unbiased estimator for 1 and its variance attains the CRLB.
We conclude that i = X is an UMVUE for p.

(d) We use the invariance property for the transformation § = 7(u) = e #. The MLE for 0 is
thus 6 = 7(j1) = e~ .

(e) Let us define the new random variable Y,, = " | X;. It can by shown (using for instance
the properties of moment generating functions) that Y,, ~ POI(nu). We have

E(é) —E (67)’() —F (e*%Yn) — My, <711> _ enu(ef%q) _ 071(1767%) 20,

thereby showing that 0 is not an unbiased estimator for 6.

10



(f)

0 is asymptotically unbiased for 6 if lim,, . E(é) = . The latter expectation was already
calculated in the previous part so it remains to take the limit. Using the rules of limits, we
have ) 1

lim E() = lim gr(1=e77) _ gimemen(1-e7n).

n— oo n—oo

The limit in the exponent can be written as lim,, % which at first sight gives the

indeterminate form 8. As a possible solution one may realize that 1/n becomes small as
n — oo which motivates the use of a Taylor series for the exponential (that is exp(x) =
>, Zr). This results in

n=0 n!
RS R PRSI 1 1
e e e T e b T Al

_q 1 1 1 15
= —%‘FW—M—F'”—) or n — oo,

and hence lim,,_, o E(é) = lim, oo 971(1767;) =6. 0 is asymptotically unbiased for 6.

Using the previously defined Y,,, we have 6 = ("T_l) = X ("—_I)Y". Then

n

E(f) =E ((n; 1>Yn> _E (eynlog(ngl)) ~ My, <10g <n; 1>> _ en#<elog(%)il>

= en’u'(ngl_l) = e_‘u' = 0,

and we see that 0 is indeed unbiased for 6.

We will use Var(d) = E (52) - [Il:ﬂ(é)]2 for which we only need to compute E(62). We have

()] ) ooy on v (2)

_ ew(ezlog("ll)_1> _ en#((anl)Q_l) _ on(2-1)

E(6%) =E

and find
oo 52\ N2 —n(2=2) _rommi2 2t —2p -2 (B
Var(d) =E (0%) — [E(0)] =e [e7#]*=e e~ M=e e 1).

We should compare this expression to the CRLB which was found in part (b), that is %
Another application of the Taylor series for the exponential results in

. B 2 3
Var(@)ze_2“<en—1)2@‘”‘((14—”—1—u—|—'u+...>—1>

n  2n?  3ln3

—2n 2
pie po,op
= 1+ —4+-——+... ).
n ( +2n+3!n2 * )

Note that the higher order terms like -, 3‘,‘% et cetera will all positive be positive. The
variance of 0 is thus greater than the CRLB.

11



Exercise 34

(a)

The likelihood and log-likelihood are L(p) = [];_; p(1 — p)** = p"(1 — p)"* and
In L(p) = nln(p) + nz In(1 — p),

respectively. The first and second derivative of this log-likelihood with respect to the
parameter p are

ilnL(p):Ef nx :nfnp(lJrf)
dp p 1-p p(1—p)
d? n nT
—Inlp =—-——-———.
g ) = (1-p)?
Equating the first derivative to zero yields the candidate solution p = p%j The following
calculation shows that this indeed gives a maximum
d? 1+z)?
Somr)| = D
P p=p X
where we used 1 —p = 1%‘0 and rule out the case where Z = 0 (this can happen with finite

probability yet will not give us information regarding p). We conclude that the MLE for p
isp= H-%

Apply the invariance property to 6§ = 7(p) = 1%9. The MLE is obtained as

1— —L_
0=10p) = —X =X.
1+X

If X has pdf f(x;p) = p(1 — p)* for x = 0,1,..., then Y = 1 + X has the GEO(p)
distribution. By linearity of the expectation we get E(X) =E(Y) -1 = zl) — 1 (see Table
B.2). This expectation will be needed later on. For the numerator of the CRLB, 7(p) = 1;%

yields 7/(p) = — . The following calculations can be used to evaluated the expectation in
the denominator of the CRLB:
0? 1 x
~Z ] cp) = ——
2 1 BEX 1 i-1 1
E(%lnf(X;p))——g— ( )2:—*2— o T
dp p* (1-p) p* (1-p) p*(1—p)

The CRLB equals

(10 S S )

—nE (%lnf(X;p)) P2(1—p) np

We compute the mean and variance of . The expectation is E(f) = E(X) = E (
IS E(X) = 1%” = . Because X is shifted version of Y, we have Var(X)

1-p

e The variance of @ is therefore

Var(f) = Var(X) = Var (n ;XZ> =3 ;Var(Xi) = e

The estimator 6 is unbiased for 6 and attains the CRLB. We conclude that § = X is an
UMVUE for 6.

12



(€) limy, oo MSE(6y,) = limy o0 Var(f) = limy, o0 -8 = 0 which shows that the MLE 6,, =
X,, of 8 is MSE consistent for 6.

(f) Under regularity conditions we know that the asymptotic distribution of MLEs is normal
with mean 6 and the variance being equal to the CRLB (see page 316 of B&E). Thus, for

large n, approximately
. 1—
§~N (9, 2”) :
np

It is mathematically neater to write v/n(6 — 6) 4N (O, Lop )

p

13



