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Exercise 1

(a) First population moment can be calculated as

E(X) =

∫ 1

0

xθxθ−1dx =

∫ 1

0

θxθdx =
θ

θ + 1
xθ+1

∣∣∣∣1
0

=
θ

θ + 1
.

Equate it to the first sample moment and solve the equation to obtain the MME θ̃:

θ̃

θ̃ + 1
= X̄ ⇒ θ̃ =

X̄

1− X̄
.

(b) We again calculate E(X). The calculation shows

E(X) =

∫ ∞
1

x(θ + 1)x−θ−2dx =

∫ ∞
1

(θ + 1)x−θ−1dx = −θ + 1

θ
x−θ

∣∣∣∣∞
1

=
θ + 1

θ

Equate it to the first sample moment and solve the equation to obtain the MME θ̃:

θ̃ + 1

θ̃
= X̄ ⇒ θ̃ =

1

X̄ − 1
.

(c) The pdf corresponds to a GAM(1/θ, 2) distribution since f(x; θ) = θ2xe−θx = 1
(1/θ)2Γ(2)xe

− x
1/θ .

We can find the population moment E(X) = 2
θ from Table B.2. Equate it to the first sample

moment and solve the equation to obtain the MME θ̃:

2

θ̃
= X̄ ⇒ θ̃ =

2

X̄
.

Exercise 3

(a) The likelihood function is L(θ) =
∏n
i=1 f(xi; θ) = θn (

∏n
i=1 xi)

θ−1
and the associated log-

likelihood is

lnL(θ) = n ln θ + (θ − 1)

n∑
i=1

ln(xi).

The first and second derivative of the log-likelihood are:

d

dθ
lnL(θ) =

n

θ
+

n∑
i=1

ln(xi),
d2

dθ2
lnL(θ) = − n

θ2
< 0.
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The second derivative is negative for all values of θ. We can thus solve the first order
condition to find the estimator θ̂ = − n∑n

i=1 ln(Xi)
.

(b) The likelihood function is L(θ) =
∏n
i=1 f(xi; θ) = (θ+1)n (

∏n
i=1 xi)

−θ−2
and the associated

log-likelihood is

lnL(θ) = n ln(θ + 1)− (θ + 2)

n∑
i=1

ln(xi).

The first and second derivative of the log-likelihood with respect to θ are

d

dθ
lnL(θ) =

n

θ + 1
−

n∑
i=1

ln(xi),
d2

dθ2
lnL(θ) = − n

(θ + 1)2
< 0.

The second derivative is negative for all values of θ. We can thus solve the first order
condition to find the estimator θ̂ = n∑n

i=1 ln(Xi)
− 1.

(c) We have the likelihood function L(θ) =
∏n
i=1 f(xi; θ) = θ2n (

∏n
i=1 xi) e

−θ
∑n
i=1 xi and log-

likelihood function

lnL(θ) = 2n ln(θ) +

n∑
i=1

ln(xi)− θnx̄,

where we used x̄ = 1
n

∑n
i=1 xi. The first derivative is d

dθ lnL(θ) = 2n
θ − nx̄. Solving the

first order condition, i.e. 2n
θ̂
−
∑n
i=1 xi = 0, gives the candidate solution θ̂ = 2/x̄. For the

second derivative we have
d2

dθ2
lnL(θ) = −2n

θ2
< 0,

for all θ. We conclude that the maximum likelihood estimator is θ̂ = 2/X̄.

Exercise 5
For the given pdf, the likelihood function equals

L(θ) =

n∏
i=1

f(xi; θ) = 2nθ2n

(
n∏
i=1

xi

)−3

, 0 < θ ≤ x1:n = min
1≤i≤n

xi.

This likelihood is strictly monotonically increasing in θ and we would correspondingly like to
take θ as large as possible. However, due to the restriction 0 < θ ≤ x1:n, the likelihood will be
zero whenever θ exceeds x1:n. It follows that the ML estimator is θ̂ = X1:n.

Exercise 7
All the quantities in exercises (a)-(c) are transformations of p. We will thus first derive the MLE
for the parameter p and subsequently use the invariance property. First the derivation of the
likelihood function

L(p) =

n∏
i=1

f(xi; p) = pn(1− p)
∑n
i=1 xi−n = pn(1− p)n(x̄−1),

(using the definition of x̄) and log-likelihood function

lnL(p) = n ln(p) + n(x̄− 1) ln(1− p).
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The first derivative of the log-likelihood function is

d

dp
lnL(p) =

n

p
− n(x̄− 1)

1− p
= 0.

We can find a candidate solution for the MLE by setting this first derivative equal to zero, that
is

n

p̂
− n(x̄− 1)

1− p̂
= 0 ⇒ p̂ =

1

x̄
.

It remains to verify whether our candidate solution indeed gives a maximum. For this we should

show that d2

dp2 lnL(p)
∣∣∣
p=p̂

< 0. By differentiation we find

d2

dp2
lnL(p)

∣∣∣∣
p=p̂

= − n

p2
− n(x̄− 1)

(1− p)2

∣∣∣∣
p=p̂

= −n x̄3

x̄− 1
< 0

since x ∈ {1, 2, 3, . . .} hence x̄ > 1 (we rule out the case when we observe a sample of only ones
because this gives no information about the parameter). The ML estimator is thus p̂ = 1

X̄
. The

subquestions are now quick to answer using the Invariance Property of MLEs (Theorem 9.2.2 on
page 298 of B&E).

(a) τ(p) = E(X) = 1
p , hence the MLE is τ(p̂) = 1

p̂ = X̄

(b) τ(p) = Var(X) = 1−p
p2 , hence the MLE is τ(p̂) = 1−p̂

p̂2 = X̄(X̄ − 1)

(c) τ(p) = P(X > k) = (1 − p)k, hence the MLE is τ(p̂) = (1 − p̂)k =
(
1− 1

X̄

)k
for arbitrary

k = 1, 2, . . .

Exercise 15

(a) If X ∼ BIN(n, p), then E(X) = np and Var(X) = np(1− p) (see Table B.2). We have

E
[
cp̂(1− p̂)

]
= E

[
c
X

n

(
1− X

n

)]
=
c

n
E
[
X − X2

n

]
=
c

n

[
E(X)− E(X2)

n

]
=
c

n

(
E(X)− Var(X) + (E(X))2

n

)
=
c

n

(
np− np(1− p) + (np)2

n

)
=
c

n

(
np− p(1− p)− np2

)
=
c

n

(
np(1− p)− p(1− p)

)
= c

n− 1

n
p(1− p).

E
[
cp̂(1− p̂)

]
= p(1− p) will hold when c = n

n−1 .

(b) Note that Var(X) = np(1 − p). In view of the previous exercise we obtain the unbiased

estimator n2

n−1 p̂(1− p̂).

(c) We now have a random sample X1, . . . , XN ∼ BIN(n, p). The fact that E(X) = np suggest

the estimator p̂∗ = 1
nN

∑N
i=1Xi. The following calculation shows that this is indeed an

unbiased estimator:

E(p̂∗) = E

(
1

nN

N∑
i=1

Xi

)
=

1

nN

N∑
i=1

E(Xi) =
1

nN
N(np) = p.

3



Similarly, an unbiased estimator for Var(X) = np(1 − p) is easily constructed using the

answer to part (a). Defining the estimator as V̂ar(X) = 1
N

∑N
i=1

n2

n−1
Xi
n (1− Xi

n ), we have

E
(
V̂ar(X)

)
= E

(
1

N

N∑
i=1

n2

n− 1

Xi

n

(
1− Xi

n

))
=

1

N

N∑
i=1

E
(

n2

n− 1

Xi

n

(
1− Xi

n

))
= Var(X).

Exercise 17

(a) Since X ∼ UNIF(θ − 1, θ + 1), we have E(X) = θ−1+θ+1
2 = θ (see Table B.2) and also

E(X̄) = 1
n

∑n
i=1 E(Xi) = θ. X̄ is thus an unbiased estimator for θ.

(b) The pdf of the uniform distribution UNIF(θ − 1, θ + 1) is

f(x; θ) =
1

2
θ − 1 < x < θ + 1

and the CDF is

F (x; θ) =


0 x ≤ θ − 1
x−θ+1

2 θ − 1 < x < θ + 1
1 x ≥ θ + 1

(see page 109). Using Theorem 6.5.2 (page 217 of B&E), we see that the pdfs of the order
statistics X1:n and Xn:n are

g1(x) = n(1− F (x))n−1f(x) =
n

2n
(θ + 1− x)n−1 θ − 1 < x < θ + 1

gn(x) = n(F (x))n−1f(x) =
n

2n
(x− θ + 1)n−1 θ − 1 < x < θ + 1,

respectively. First, we calculate E(X1:n):

E(X1:n) =

∫ θ+1

θ−1

x
n

2n
(θ + 1− x)n−1dx =

∫ 2

0

(θ + 1− y)
n

2n
yn−1dy

= (θ + 1)−
∫ 2

0

n

2n
yndy = (θ + 1)− 2n

n+ 1
= (θ − 1) +

2

n+ 1
,

by changing the integration variable to y = θ + 1 − x. In other words, X1:n is on average
2

n+1 higher than the lower bound θ − 1. Second, for E(Xn:n), we have

E(Xn:n) =

∫ θ+1

θ−1

x
n

2n
(x− θ + 1)n−1dx =

∫ 2

0

(z + θ − 1)
n

2n
zn−1dz

= (θ − 1) +

∫ 2

0

n

2n
zndz = (θ − 1) +

2n

n+ 1
= (θ + 1)− 2

n+ 1
,

after changing the integration variable to z = x − θ + 1. We see that Xn:n is lower than
the upper bound θ + 1 by 2

n+1 (the same quantity as before). Finally, by linearity of the
expectation, we have

E
(
X1:n +Xn:n

2

)
=

E(X1:n) + E(Xn:n)

2
=

(θ − 1) + 2
n+1 + (θ + 1)− 2

n+1

2
= θ,

and we see that the “midrange” is indeed an unbiased estimator for θ.
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Exercise 21

(a) If X ∼ BIN(1, p), then E(X) = p and Var(X) = p(1−p) (see Table B.2). For the numerator
of the CRLB, we have τ(p) = p and thus τ ′(p) = 1. The following calculations can be used
to evaluated the expectation in the denominator:

f(x; p) = px(1− p)1−x

ln f(x; p) = x ln p+ (1− x) ln(1− p)
∂

∂p
ln f(x; p) =

x

p
− 1− x

1− p
=

x− p
p(1− p)

E
(
∂

∂p
ln f(X; p)

)2

= E
(
X − p
p(1− p)

)2

=
E(X − p)2

p2(1− p)2
=

Var(X)

p2(1− p)2
=

1

p(1− p)

The CRLB is now obtained as

[τ ′(p)]2

nE
(
∂
∂p ln f(X; p)

)2 =
1
n

p(1−p)
=
p(1− p)

n
.

(b) Only the numerator of the CRLB will change. We now have τ(p) = p(1 − p) such that
τ ′(p) = 1− 2p. The CRLB is

[τ ′(p)]2

nE
(
∂
∂p ln f(X; p)

)2 =
(1− 2p)2

n
p(1−p)

=
p(1− p)(1− 2p)2

n
.

(c) Looking at your answer for part (a) you should recognize that the CRLB coincides with
Var(X)/n. As an educated guess we therefore try p̂ = X̄. First, from E(X) = p, we see
that

E(p̂) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) = p

and conclude that X̄ is an unbiased estimator for p. The variance from this estimator, i.e.

Var(p̂) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
p(1− p)

n

is seen to attain the CRLB. We conclude that p̂ = X̄ is an UMVUE of p.

Exercise 22

(a) For the numerator of the CRLB, we find τ(µ) = µ and τ ′(µ) = 1. The next intermediate
steps can be used to evaluated the expectation in the denominator:

f(x;µ) =
1√
2π3

e−
(x−µ)2

18

ln f(x;µ) = − ln(
√

2π3)− (x− µ)2

18
∂

∂µ
ln f(x;µ) =

x− µ
9

E
(
∂

∂µ
ln f(X;µ)

)2

= E
(
X − µ

9

)2

=
E(X − µ)2

81
=

Var(X)

81
=

1

9
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The CRLB is now obtained as

[τ ′(µ)]2

nE
(
∂
∂µ ln f(X;µ)

)2 =
1
n
9

=
9

n
.

(b) The expectation and variance of µ̂ are

E(µ̂) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) = µ,

Var(µ̂) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
9

n
.

The final expression for the expectation shows that µ̂ is an unbiased estimator for µ. Since
the variance of µ̂ also attains the CRLB, we can conclude that µ̂ is an UMVUE for µ.

(c) The 95% percentile of X ∼ N(µ, 9) can be written as τ(µ) = µ + 3z0.95, since Z =
X−µ

3 ∼ N(0, 1) (remember that z0.95 denotes the 95% percentile of the standard normal
distribution). By the invariance property τ(µ̂) = X̄+3z0.95 is the MLE of τ(µ). In addition,
τ ′(µ) = 1 implies that the CRLB remains 9

n . Since

E
(
τ(µ̂)

)
= 3z0.95 + E(X̄) = 3z0.95 + µ = τ(µ)

and

Var
(
τ(µ̂)

)
= Var(X̄) =

9

n
,

it follows that τ(µ̂) = 3z0.95 + X̄ is an UMVUE of τ(µ).

Exercise 23

(a) We first have to derive the MLE for θ. We proceed with the usual steps. The likelihood

function is L(θ) =
∏n
i=1 f(xi; θ) = (2πθ)−n/2 exp

(
−
∑n
i=1 x

2
i

2θ

)
and therefore

lnL(θ) = −n
2

ln(2π)− n

2
ln(θ)−

∑n
i=1 x

2
i

2θ
.

We subsequently compute the first two derivatives as

d

dθ
lnL(θ) = − n

2θ
+

∑n
i=1 x

2
i

2θ2

d2

dθ2
lnL(θ) =

n

2θ2
−
∑n
i=1 x

2
i

θ3
.

If we equate the first derivate to zero and solve for the estimator, then we find θ̂ =
1
n

∑n
i=1 x

2
i . The second order condition is fulfilled because

d2

dθ2
lnL(θ)

∣∣∣∣
θ=θ̂

=
n

2θ̂2
− nθ̂

θ̂3
= − n

2θ̂2
< 0.

The MLE for θ is thus θ̂ = 1
n

∑n
i=1X

2
i . From

E(θ̂) = E

(
1

n

n∑
i=1

X2
i

)
=

1

n

n∑
i=1

E(X2
i ) =

1

n

n∑
i=1

Var(Xi) = θ,

we see that this estimator is unbiased for θ.
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(b) Starting from f(X; θ) = 1√
2πθ

exp
(
−x

2

2θ

)
, we find

ln f(X; θ) = −1

2
ln(2π)− 1

2
ln(θ)− X2

2θ
,

and by steps similar to those in part (a), the second derivatie w.r.t. θ becomes

∂2

∂θ2
ln f(X; θ) =

1

2θ2
− X2

θ3
.

Note that X/
√
θ ∼ N(0, 1), and thus X2

θ ∼ χ2(1). Using the latter result, we have

−E
[
∂2

∂θ2 ln f(X; θ)
]

= 1
θ2 E

(
X2

θ

)
− 1

2θ2 = 1
2θ2 and a CRLB evaluating to

(
−nE

[
∂2

∂θ2
ln f(X; θ)

])−1

=
2θ2

n
.

The variance of θ̂ is

Var(θ̂) = Var

(
1

n

n∑
i=1

X2
i

)
= Var

(
θ

n

n∑
i=1

(
Xi√
θ

)2
)

=
θ2

n2
Var(Yn) =

θ2

n2
(2n) =

2θ2

n
,

where we made use of the random variable Yn = 1
θ

∑n
i=1X

2
i =

∑n
i=1

(
Xi√
θ

)2

. Since

Xi/
√
θ ∼ N(0, 1), we know that this Yn is the sum of squared (and independent) stan-

dard normal random variables. Therefore, Yn ∼ χ2(n) and Var(Yn) = 2n. The estimator

θ̂ is thus unbiased (see (a)) and its variance attains the CRLB. We conclude that θ̂ is an
UMVUE for θ.

Exercise 26

(a) The likelihood function is

L(θ) =

n∏
i=1

f(xi; θ) =
1

θn
, 0 < x1:n = min

1≤i≤n
xi, xn:n = max

1≤i≤n
xi ≤ θ.

L(θ) is strictly decreasing in θ, so L(θ) is maximal if θ is minimal. However, the restriction
xn:n ≤ θ implies that we should not decrease θ below the value xn:n (otherwise the likelihood

would become zero). It follows that θ̂ = Xn:n.

(b) The given pdf corresponds to the UNIF(0, θ) distribution. If the random variable X his
this particular uniform distribution, then E(X) = θ/2. The estimator follows from:

X̄ =
θ̃

2
⇒ θ̃ = 2X̄.

(c) The CDF related to the UNIF(0, θ) distribution is

F (x; θ) =

 0 x ≤ 0
x
θ 0 < x ≤ θ
1 x > θ.
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The pdf of the order statistic Xn:n, cf. Theorem 6.5.2 (page 217 of B&E), is thus equal to

gn(x) = n(F (x))n−1f(x) =
n

θn
xn−1, 0 < x ≤ θ,

(and zero elsewhere). We can now find E(Xn:n) by integration,

E(θ̂) = E(Xn:n) =

∫ θ

0

n

θn
xndx =

n

θn
xn+1

n+ 1

∣∣∣∣θ
0

=
n

n+ 1
θ 6= θ,

which reveals that the MLE θ̂ is biased.

(d) Use E(X) = θ
2 and linearity of the expectation operator to find

E(θ̃) = E(2X̄) = E

(
2

n

n∑
i=1

Xi

)
=

2

n

n∑
i=1

E(Xi) = θ.

We now see that MME θ̃ is unbiased.

(e) Let us start with the MLE θ̂. We have MSE(θ̂) = E
(
Xn:n−θ

)2
= E(X2

n:n)−2θE(Xn:n)+θ2.
We have computed E(Xn:n) in part (c), so it remains to compute the second moment of
the estimator. The calculation shows

E(X2
n:n) =

∫ θ

0

n

θn
xn+1dx =

n

θn
xn+2

n+ 2

∣∣∣∣θ
0

=
n

n+ 2
θ2.

We can now evaluate the expression from before. We find

MSE(θ̂) =
n

n+ 2
θ2 − 2

n

n+ 1
θ2 + θ2 =

2θ2

(n+ 1)(n+ 2)
.

We continue with the method of moments estimator θ̃. This estimator was unbiased such
that MSE(θ̃) = Var(θ̃). Since Var(X) = θ2

12 , we can easily compute this variance by
exploiting the standard properties of variances, namely

MSE(θ̃) = Var(θ̃) = Var(2X̄) = Var

(
2

n

n∑
i=1

Xi

)
=

4

n2

n∑
i=1

Var(Xi) =
θ2

3n
.

The MSE of both estimator scales linearly with θ2 (which is expected because this is the
scale parameter). More interesting is the behavior as a function of n. The MLE will have

a smaller (or equal) MSE, that is MSE(θ̂) ≤ MSE(θ̃), when

2θ2

(n+ 1)(n+ 2)
≤ θ2

3n
⇒ n2 − 3n+ 2 = (n− 1)(n− 2) ≥ 0.

The parabolic function f(x) = (x− 1)(x− 2) intersect the x-axis in the points x = 1 and
x = 2. We therefore conclude that the MLE for θ has an MSE that is never higher than
the MSE of the MME (for any sample size n = 1, 2, . . .).

Exercise 31
The MSEs for θ̂ and θ̃ were computed in Exercise 26. According to Definition 9.4.2 (page 312 in
B&E) we only have to take the limit n→∞.
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(a) limn→∞MSE(θ̂n) = limn→∞
2θ2

(n+1)(n+2) = 0, hence θ̂n = Xn:n is MSE consistent for θ.

(b) limn→∞MSE(θ̃n) = limn→∞
θ2

3n = 0, hence θ̃n = 2X̄n is MSE consistent for θ.

Exercise 32
In Exercise 5 we have seen that θ̂n = X1:n. From

∫ x
θ

2θ2t−3dt = −θ2t−2
∣∣x
θ

= 1− θ2x−2, we find

the following CDF for θ̂:

F (x; θ) =

{
0 x ≤ θ
1− θ2x−2 θ < x.

The related pdf for the estimator θ̂ is1

g1(x) = n(1− F (x))n−1f(x) = 2nθ2nx−2n−1 θ ≤ x,

and zero otherwise. We can now compute the probability stated in Definition 9.4.1 (page 311 in
B&E) explicitly:

P
(
|θ̂n − θ| < ε

)
= P

(
X1:n − θ < ε

)
= P

(
X1:n < θ + ε

)
=

∫ θ+ε

θ

2nθ2nx−2n−1dx

= −θ2nx−2n
∣∣θ+ε
θ

= 1− θ2n(θ + ε)−2n = 1−
(

θ

θ + ε

)2n

.

Since 0 <
(

θ
θ+ε

)
< 1 for any ε > 0, we obtain limn→∞ P

(
|θ̂n− θ| < ε

)
= 1 thereby showing that

the MLE θ̂n = X1:n is (simply) consistent for θ.

1The CDF for X1:n is P(X1:n ≤ x) = 1−P(X1:n > x) = 1−P(X1 > x,X2 > x, . . . ,Xn > x) = 1−
∏n

i=1 P(Xi >
x) = 1 − [1 − F (x)]n. By differentiation w.r.t. x we find g1(x) = n(1 − F (x))n−1f(x).
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Exercise 33

(a) If X ∼ POI(µ), then E(X) = Var(X) = µ (see Table B.2). For the numerator of the
CRLB, τ(µ) = µ yields τ ′(µ) = 1. The following calculations can be used to evaluated the
expectation in the denominator:

f(x;µ) =
e−µµx

x!
ln f(x;µ) = −µ+ x lnµ− ln(x!)

∂

∂µ
ln f(x;µ) = −1 +

x

µ
=
x− µ
µ

E
(
∂

∂µ
ln f(X; p)

)2

= E
(
x− µ
µ

)2

=
E(X − µ)2

µ2
=

Var(X)

µ2
=

1

µ
.

The CRLB is thus equal to

[τ ′(µ)]2

nE
(
∂
∂µ ln f(X;µ)

)2 =
1
n
µ

=
µ

n
.

(b) The denominator of the CRLB remains unchanged. But now θ = τ(µ) = e−µ, hence
τ ′(µ) = −e−µ. The new CRLB is thus

[τ ′(µ)]2

nE
(
∂
∂µ ln f(X;µ)

)2 =
(−e−µ)2

n
µ

=
µe−2µ

n
.

(c) The CRLB for µ has the form Var(X)/n. The sample mean is therefore a promising
candidate for an UMVUE. We compute mean and variance of our candidate estimator
µ̂ = X̄ and find

E(µ̂) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) = µ,

Var(µ̂) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
µ

n
.

From E(µ̂) we see that µ̂ is an unbiased estimator for µ and its variance attains the CRLB.
We conclude that µ̂ = X̄ is an UMVUE for µ.

(d) We use the invariance property for the transformation θ = τ(µ) = e−µ. The MLE for θ is

thus θ̂ = τ(µ̂) = e−X̄ .

(e) Let us define the new random variable Yn =
∑n
i=1Xi. It can by shown (using for instance

the properties of moment generating functions) that Yn ∼ POI(nµ). We have

E(θ̂) = E
(
e−X̄

)
= E

(
e−

1
nYn
)

= MYn

(
− 1

n

)
= e

nµ
(
e−

1
n−1

)
= θ

n
(

1−e−
1
n

)
6= θ,

thereby showing that θ̂ is not an unbiased estimator for θ.
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(f) θ̂ is asymptotically unbiased for θ if limn→∞ E(θ̂) = θ. The latter expectation was already
calculated in the previous part so it remains to take the limit. Using the rules of limits, we
have

lim
n→∞

E(θ̂) = lim
n→∞

θ
n
(

1−e−
1
n

)
= θ

limn→∞ n
(

1−e−
1
n

)
.

The limit in the exponent can be written as limn→∞
1−e−1/n

1/n which at first sight gives the

indeterminate form 0
0 . As a possible solution one may realize that 1/n becomes small as

n → ∞ which motivates the use of a Taylor series for the exponential (that is exp(x) =∑∞
n=0

xn

n! ). This results in

n
[
1− e− 1

n

]
= n

[
1−

(
1− 1

n
+

1

2n2
− 1

3!n3
+

1

4!n4
− . . .

)]
= 1− 1

2n
+

1

3!n2
− 1

4!n3
+ · · · → 1 for n→∞,

and hence limn→∞ E(θ̂) = limn→∞ θ
n
(

1−e−
1
n

)
= θ. θ̂ is asymptotically unbiased for θ.

(g) Using the previously defined Yn, we have θ̃ =
(
n−1
n

)∑n
i=1Xi =

(
n−1
n

)Yn
. Then

E(θ̃) = E

((
n− 1

n

)Yn)
= E

(
eYn log(n−1

n )
)

= MYn

(
log

(
n− 1

n

))
= e

nµ

(
e
log(n−1

n )−1

)

= enµ(n−1
n −1) = e−µ = θ,

and we see that θ̃ is indeed unbiased for θ.

(h) We will use Var(θ̃) = E
(
θ̃2
)
−
[
E(θ̃)

]2
for which we only need to compute E(θ̃2). We have

E(θ̃2) = E

[(n− 1

n

)Yn]2
 = E

(
e2 log(n−1

n )Yn
)

= MYn

(
2 log

(
n− 1

n

))

= e
nµ

(
e
2 log(n−1

n )−1

)
= e

nµ
(
(n−1

n )
2−1

)
= e−µ(2− 1

n ),

and find

Var(θ̃) = E
(
θ̃2
)
−
[
E(θ̃)

]2
= e−µ(2− 1

n ) − [e−µ]2 = e−2µ+ µ
n − e−2µ = e−2µ

(
e
µ
n − 1

)
.

We should compare this expression to the CRLB which was found in part (b), that is µe−2µ

n .
Another application of the Taylor series for the exponential results in

Var(θ̃) = e−2µ
(
e
µ
n − 1

)
= e−2µ

((
1 +

µ

n
+

µ2

2n2
+

µ3

3!n3
+ . . .

)
− 1

)
=
µe−2µ

n

(
1 +

µ

2n
+

µ2

3!n2
+ . . .

)
.

Note that the higher order terms like µ
2n , µ2

3!n2 et cetera will all positive be positive. The

variance of θ̃ is thus greater than the CRLB.
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Exercise 34

(a) The likelihood and log-likelihood are L(p) =
∏n
i=1 p(1− p)xi = pn(1− p)nx̄ and

lnL(p) = n ln(p) + nx̄ ln(1− p),

respectively. The first and second derivative of this log-likelihood with respect to the
parameter p are

d

dp
lnL(p) =

n

p
− nx̄

1− p
=
n− np(1 + x̄)

p(1− p)
d2

dp2
lnL(p) = − n

p2
− nx̄

(1− p)2
.

Equating the first derivative to zero yields the candidate solution p̂ = 1
1+x̄ . The following

calculation shows that this indeed gives a maximum

d2

dp2
lnL(p)

∣∣∣∣
p=p̂

= −n(1 + x̄)2 − n(1 + x̄)2

x̄
,

where we used 1− p̂ = x̄
1+x̄ and rule out the case where x̄ = 0 (this can happen with finite

probability yet will not give us information regarding p). We conclude that the MLE for p
is p̂ = 1

1+X̄
.

(b) Apply the invariance property to θ = τ(p) = 1−p
p . The MLE is obtained as

θ̂ = τ(p̂) =
1− 1

1+X̄
1

1+X̄

= X̄.

(c) If X has pdf f(x; p) = p(1 − p)x for x = 0, 1, . . ., then Y = 1 + X has the GEO(p)
distribution. By linearity of the expectation we get E(X) = E(Y ) − 1 = 1

p − 1 (see Table

B.2). This expectation will be needed later on. For the numerator of the CRLB, τ(p) = 1−p
p

yields τ ′(p) = − 1
p2 . The following calculations can be used to evaluated the expectation in

the denominator of the CRLB:

∂2

∂p2
ln f(x; p) = − 1

p2
− x

(1− p)2

E
(
∂2

∂p2
ln f(X; p)

)
= − 1

p2
− E(X)

(1− p)2
= − 1

p2
−

1
p − 1

(1− p)2
= − 1

p2(1− p)
The CRLB equals

[τ ′(p)]2

−nE
(
∂2

∂p2 ln f(X; p)
) =

1
p4

n
p2(1−p)

=
1− p
np2

.

(d) We compute the mean and variance of θ̂. The expectation is E(θ̂) = E(X̄) = E
(

1
n

∑n
i=1Xi

)
=

1
n

∑n
i=1 E(Xi) = 1−p

p = θ. Because X is shifted version of Y , we have Var(X) = Var(Y ) =
1−p
p2 . The variance of θ̂ is therefore

Var(θ̂) = Var(X̄) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
1− p
np2

.

The estimator θ̂ is unbiased for θ and attains the CRLB. We conclude that θ̂ = X̄ is an
UMVUE for θ.
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(e) limn→∞MSE(θ̂n) = limn→∞Var(θ̂n) = limn→∞
1−p
np2 = 0 which shows that the MLE θ̂n =

X̄n of θ is MSE consistent for θ.

(f) Under regularity conditions we know that the asymptotic distribution of MLEs is normal
with mean θ and the variance being equal to the CRLB (see page 316 of B&E). Thus, for
large n, approximately

θ̂ ∼ N

(
θ,

1− p
np2

)
.

It is mathematically neater to write
√
n
(
θ̂ − θ

) d−→ N
(

0, 1−p
p2

)
.
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