Solutions to Selected Exercises from Chapter 9 Bain \& Engelhardt - Second Edition

Andreas Alfons and Hanno Reuvers
Erasmus School of Economics, Erasmus Universiteit Rotterdam

Exercise 1

(a) First population moment can be calculated as

$$
\mathbb{E}(X)=\int_{0}^{1} x \theta x^{\theta-1} d x=\int_{0}^{1} \theta x^{\theta} d x=\left.\frac{\theta}{\theta+1} x^{\theta+1}\right|_{0} ^{1}=\frac{\theta}{\theta+1}
$$

Equate it to the first sample moment and solve the equation to obtain the MME $\tilde{\theta}$:

$$
\frac{\tilde{\theta}}{\tilde{\theta}+1}=\bar{X} \quad \Rightarrow \quad \tilde{\theta}=\frac{\bar{X}}{1-\bar{X}}
$$

(b) We again calculate $\mathbb{E}(X)$. The calculation shows

$$
\mathbb{E}(X)=\int_{1}^{\infty} x(\theta+1) x^{-\theta-2} d x=\int_{1}^{\infty}(\theta+1) x^{-\theta-1} d x=-\left.\frac{\theta+1}{\theta} x^{-\theta}\right|_{1} ^{\infty}=\frac{\theta+1}{\theta}
$$

Equate it to the first sample moment and solve the equation to obtain the MME $\tilde{\theta}$:

$$
\frac{\tilde{\theta}+1}{\tilde{\theta}}=\bar{X} \quad \Rightarrow \quad \tilde{\theta}=\frac{1}{\bar{X}-1} .
$$

(c) The pdf corresponds to a $\operatorname{GAM}(1 / \theta, 2)$ distribution since $f(x ; \theta)=\theta^{2} x e^{-\theta x}=\frac{1}{(1 / \theta)^{2} \Gamma(2)} x e^{-\frac{x}{1 / \theta}}$. We can find the population moment $\mathbb{E}(X)=\frac{2}{\theta}$ from Table B.2. Equate it to the first sample moment and solve the equation to obtain the MME $\tilde{\theta}$:

$$
\frac{2}{\tilde{\tilde{\theta}}}=\bar{X} \quad \Rightarrow \quad \tilde{\theta}=\frac{2}{\bar{X}}
$$

Exercise 3

(a) The likelihood function is $L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\theta^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{\theta-1}$ and the associated loglikelihood is

$$
\ln L(\theta)=n \ln \theta+(\theta-1) \sum_{i=1}^{n} \ln \left(x_{i}\right) .
$$

The first and second derivative of the log-likelihood are:

$$
\frac{d}{d \theta} \ln L(\theta)=\frac{n}{\theta}+\sum_{i=1}^{n} \ln \left(x_{i}\right), \quad \frac{d^{2}}{d \theta^{2}} \ln L(\theta)=-\frac{n}{\theta^{2}}<0 .
$$

The second derivative is negative for all values of θ. We can thus solve the first order condition to find the estimator $\hat{\theta}=-\frac{n}{\sum_{i=1}^{n} \ln \left(X_{i}\right)}$.
(b) The likelihood function is $L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=(\theta+1)^{n}\left(\prod_{i=1}^{n} x_{i}\right)^{-\theta-2}$ and the associated log-likelihood is

$$
\ln L(\theta)=n \ln (\theta+1)-(\theta+2) \sum_{i=1}^{n} \ln \left(x_{i}\right)
$$

The first and second derivative of the log-likelihood with respect to θ are

$$
\frac{d}{d \theta} \ln L(\theta)=\frac{n}{\theta+1}-\sum_{i=1}^{n} \ln \left(x_{i}\right), \quad \frac{d^{2}}{d \theta^{2}} \ln L(\theta)=-\frac{n}{(\theta+1)^{2}}<0
$$

The second derivative is negative for all values of θ. We can thus solve the first order condition to find the estimator $\hat{\theta}=\frac{n}{\sum_{i=1}^{n} \ln \left(X_{i}\right)}-1$.
(c) We have the likelihood function $L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\theta^{2 n}\left(\prod_{i=1}^{n} x_{i}\right) e^{-\theta \sum_{i=1}^{n} x_{i}}$ and loglikelihood function

$$
\ln L(\theta)=2 n \ln (\theta)+\sum_{i=1}^{n} \ln \left(x_{i}\right)-\theta n \bar{x}
$$

where we used $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. The first derivative is $\frac{d}{d \theta} \ln L(\theta)=\frac{2 n}{\theta}-n \bar{x}$. Solving the first order condition, i.e. $\frac{2 n}{\hat{\theta}}-\sum_{i=1}^{n} x_{i}=0$, gives the candidate solution $\hat{\theta}=2 / \bar{x}$. For the second derivative we have

$$
\frac{d^{2}}{d \theta^{2}} \ln L(\theta)=-\frac{2 n}{\theta^{2}}<0
$$

for all θ. We conclude that the maximum likelihood estimator is $\hat{\theta}=2 / \bar{X}$.

Exercise 5

For the given pdf, the likelihood function equals

$$
L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=2^{n} \theta^{2 n}\left(\prod_{i=1}^{n} x_{i}\right)^{-3}, \quad 0<\theta \leq x_{1: n}=\min _{1 \leq i \leq n} x_{i}
$$

This likelihood is strictly monotonically increasing in θ and we would correspondingly like to take θ as large as possible. However, due to the restriction $0<\theta \leq x_{1: n}$, the likelihood will be zero whenever θ exceeds $x_{1: n}$. It follows that the ML estimator is $\hat{\hat{\theta}}=X_{1: n}$.

Exercise 7

All the quantities in exercises (a)-(c) are transformations of p. We will thus first derive the MLE for the parameter p and subsequently use the invariance property. First the derivation of the likelihood function

$$
L(p)=\prod_{i=1}^{n} f\left(x_{i} ; p\right)=p^{n}(1-p)^{\sum_{i=1}^{n} x_{i}-n}=p^{n}(1-p)^{n(\bar{x}-1)}
$$

(using the definition of \bar{x}) and log-likelihood function

$$
\ln L(p)=n \ln (p)+n(\bar{x}-1) \ln (1-p)
$$

The first derivative of the log-likelihood function is

$$
\frac{d}{d p} \ln L(p)=\frac{n}{p}-\frac{n(\bar{x}-1)}{1-p}=0
$$

We can find a candidate solution for the MLE by setting this first derivative equal to zero, that is

$$
\frac{n}{\hat{p}}-\frac{n(\bar{x}-1)}{1-\hat{p}}=0 \quad \Rightarrow \quad \hat{p}=\frac{1}{\bar{x}}
$$

It remains to verify whether our candidate solution indeed gives a maximum. For this we should show that $\left.\frac{d^{2}}{d p^{2}} \ln L(p)\right|_{p=\hat{p}}<0$. By differentiation we find

$$
\left.\frac{d^{2}}{d p^{2}} \ln L(p)\right|_{p=\hat{p}}=-\frac{n}{p^{2}}-\left.\frac{n(\bar{x}-1)}{(1-p)^{2}}\right|_{p=\hat{p}}=-n \frac{\bar{x}^{3}}{\bar{x}-1}<0
$$

since $x \in\{1,2,3, \ldots\}$ hence $\bar{x}>1$ (we rule out the case when we observe a sample of only ones because this gives no information about the parameter). The ML estimator is thus $\hat{p}=\frac{1}{X}$. The subquestions are now quick to answer using the Invariance Property of MLEs (Theorem 9.2.2 on page 298 of $B \& E)$.
(a) $\tau(p)=\mathbb{E}(X)=\frac{1}{p}$, hence the MLE is $\tau(\hat{p})=\frac{1}{\hat{p}}=\bar{X}$
(b) $\tau(p)=\operatorname{Var}(X)=\frac{1-p}{p^{2}}$, hence the MLE is $\tau(\hat{p})=\frac{1-\hat{p}}{\hat{p}^{2}}=\bar{X}(\bar{X}-1)$
(c) $\tau(p)=\mathbb{P}(X>k)=(1-p)^{k}$, hence the MLE is $\tau(\hat{p})=(1-\hat{p})^{k}=\left(1-\frac{1}{X}\right)^{k}$ for arbitrary $k=1,2, \ldots$

Exercise 15

(a) If $X \sim \operatorname{BIN}(n, p)$, then $\mathbb{E}(X)=n p$ and $\operatorname{Var}(X)=n p(1-p)$ (see Table B.2). We have

$$
\begin{aligned}
\mathbb{E}[c \hat{p}(1-\hat{p})] & =\mathbb{E}\left[c \frac{X}{n}\left(1-\frac{X}{n}\right)\right]=\frac{c}{n} \mathbb{E}\left[X-\frac{X^{2}}{n}\right]=\frac{c}{n}\left[\mathbb{E}(X)-\frac{\mathbb{E}\left(X^{2}\right)}{n}\right] \\
& =\frac{c}{n}\left(\mathbb{E}(X)-\frac{\mathbb{V a r}(X)+(\mathbb{E}(X))^{2}}{n}\right)=\frac{c}{n}\left(n p-\frac{n p(1-p)+(n p)^{2}}{n}\right) \\
& =\frac{c}{n}\left(n p-p(1-p)-n p^{2}\right)=\frac{c}{n}(n p(1-p)-p(1-p))=c \frac{n-1}{n} p(1-p) . \\
\mathbb{E}[c \hat{p}(1-\hat{p})]= & p(1-p) \text { will hold when } c=\frac{n}{n-1} .
\end{aligned}
$$

(b) Note that $\operatorname{Var}(X)=n p(1-p)$. In view of the previous exercise we obtain the unbiased estimator $\frac{n^{2}}{n-1} \hat{p}(1-\hat{p})$.
(c) We now have a random sample $X_{1}, \ldots, X_{N} \sim \operatorname{BIN}(n, p)$. The fact that $\mathbb{E}(X)=n p$ suggest the estimator $\hat{p}^{*}=\frac{1}{n N} \sum_{i=1}^{N} X_{i}$. The following calculation shows that this is indeed an unbiased estimator:

$$
\mathbb{E}\left(\hat{p}^{*}\right)=\mathbb{E}\left(\frac{1}{n N} \sum_{i=1}^{N} X_{i}\right)=\frac{1}{n N} \sum_{i=1}^{N} \mathbb{E}\left(X_{i}\right)=\frac{1}{n N} N(n p)=p
$$

Similarly, an unbiased estimator for $\operatorname{Var}(X)=n p(1-p)$ is easily constructed using the answer to part (a). Defining the estimator as $\widehat{\operatorname{Var}(X})=\frac{1}{N} \sum_{i=1}^{N} \frac{n^{2}}{n-1} \frac{X_{i}}{n}\left(1-\frac{X_{i}}{n}\right)$, we have

$$
\mathbb{E}(\widehat{\operatorname{Var}(X}))=\mathbb{E}\left(\frac{1}{N} \sum_{i=1}^{N} \frac{n^{2}}{n-1} \frac{X_{i}}{n}\left(1-\frac{X_{i}}{n}\right)\right)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left(\frac{n^{2}}{n-1} \frac{X_{i}}{n}\left(1-\frac{X_{i}}{n}\right)\right)=\mathbb{V} \operatorname{ar}(X) .
$$

Exercise 17

(a) Since $X \sim \operatorname{UNIF}(\theta-1, \theta+1)$, we have $\mathbb{E}(X)=\frac{\theta-1+\theta+1}{2}=\theta$ (see Table B.2) and also $\mathbb{E}(\bar{X})=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\theta . \bar{X}$ is thus an unbiased estimator for θ.
(b) The pdf of the uniform distribution $\operatorname{UNIF}(\theta-1, \theta+1)$ is

$$
f(x ; \theta)=\frac{1}{2} \quad \theta-1<x<\theta+1
$$

and the CDF is

$$
F(x ; \theta)= \begin{cases}0 & x \leq \theta-1 \\ \frac{x-\theta+1}{2} & \theta-1<x<\theta+1 \\ 1 & x \geq \theta+1\end{cases}
$$

(see page 109). Using Theorem 6.5.2 (page 217 of $B \& E$), we see that the pdfs of the order statistics $X_{1: n}$ and $X_{n: n}$ are

$$
\begin{array}{ll}
g_{1}(x)=n(1-F(x))^{n-1} f(x)=\frac{n}{2^{n}}(\theta+1-x)^{n-1} & \theta-1<x<\theta+1 \\
g_{n}(x)=n(F(x))^{n-1} f(x)=\frac{n}{2^{n}}(x-\theta+1)^{n-1} & \theta-1<x<\theta+1
\end{array}
$$

respectively. First, we calculate $\mathbb{E}\left(X_{1: n}\right)$:

$$
\begin{aligned}
\mathbb{E}\left(X_{1: n}\right) & =\int_{\theta-1}^{\theta+1} x \frac{n}{2^{n}}(\theta+1-x)^{n-1} d x=\int_{0}^{2}(\theta+1-y) \frac{n}{2^{n}} y^{n-1} d y \\
& =(\theta+1)-\int_{0}^{2} \frac{n}{2^{n}} y^{n} d y=(\theta+1)-\frac{2 n}{n+1}=(\theta-1)+\frac{2}{n+1}
\end{aligned}
$$

by changing the integration variable to $y=\theta+1-x$. In other words, $X_{1: n}$ is on average $\frac{2}{n+1}$ higher than the lower bound $\theta-1$. Second, for $\mathbb{E}\left(X_{n: n}\right)$, we have

$$
\begin{aligned}
\mathbb{E}\left(X_{n: n}\right) & =\int_{\theta-1}^{\theta+1} x \frac{n}{2^{n}}(x-\theta+1)^{n-1} d x=\int_{0}^{2}(z+\theta-1) \frac{n}{2^{n}} z^{n-1} d z \\
& =(\theta-1)+\int_{0}^{2} \frac{n}{2^{n}} z^{n} d z=(\theta-1)+\frac{2 n}{n+1}=(\theta+1)-\frac{2}{n+1}
\end{aligned}
$$

after changing the integration variable to $z=x-\theta+1$. We see that $X_{n: n}$ is lower than the upper bound $\theta+1$ by $\frac{2}{n+1}$ (the same quantity as before). Finally, by linearity of the expectation, we have

$$
\mathbb{E}\left(\frac{X_{1: n}+X_{n: n}}{2}\right)=\frac{\mathbb{E}\left(X_{1: n}\right)+\mathbb{E}\left(X_{n: n}\right)}{2}=\frac{(\theta-1)+\frac{2}{n+1}+(\theta+1)-\frac{2}{n+1}}{2}=\theta
$$

and we see that the "midrange" is indeed an unbiased estimator for θ.

Exercise 21

(a) If $X \sim \operatorname{BIN}(1, p)$, then $\mathbb{E}(X)=p$ and $\operatorname{Var}(X)=p(1-p)$ (see Table B.2). For the numerator of the CRLB, we have $\tau(p)=p$ and thus $\tau^{\prime}(p)=1$. The following calculations can be used to evaluated the expectation in the denominator:

$$
\begin{aligned}
f(x ; p) & =p^{x}(1-p)^{1-x} \\
\ln f(x ; p) & =x \ln p+(1-x) \ln (1-p) \\
\frac{\partial}{\partial p} \ln f(x ; p) & =\frac{x}{p}-\frac{1-x}{1-p}=\frac{x-p}{p(1-p)} \\
\mathbb{E}\left(\frac{\partial}{\partial p} \ln f(X ; p)\right)^{2} & =\mathbb{E}\left(\frac{X-p}{p(1-p)}\right)^{2}=\frac{\mathbb{E}(X-p)^{2}}{p^{2}(1-p)^{2}}=\frac{\operatorname{Var}(X)}{p^{2}(1-p)^{2}}=\frac{1}{p(1-p)}
\end{aligned}
$$

The CRLB is now obtained as

$$
\frac{\left[\tau^{\prime}(p)\right]^{2}}{n \mathbb{E}\left(\frac{\partial}{\partial p} \ln f(X ; p)\right)^{2}}=\frac{1}{\frac{n}{p(1-p)}}=\frac{p(1-p)}{n}
$$

(b) Only the numerator of the CRLB will change. We now have $\tau(p)=p(1-p)$ such that $\tau^{\prime}(p)=1-2 p$. The CRLB is

$$
\frac{\left[\tau^{\prime}(p)\right]^{2}}{n \mathbb{E}\left(\frac{\partial}{\partial p} \ln f(X ; p)\right)^{2}}=\frac{(1-2 p)^{2}}{\frac{n}{p(1-p)}}=\frac{p(1-p)(1-2 p)^{2}}{n}
$$

(c) Looking at your answer for part (a) you should recognize that the CRLB coincides with $\operatorname{Var}(X) / n$. As an educated guess we therefore try $\hat{p}=\bar{X}$. First, from $\mathbb{E}(X)=p$, we see that

$$
\mathbb{E}(\hat{p})=\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=p
$$

and conclude that \bar{X} is an unbiased estimator for p. The variance from this estimator, i.e.

$$
\operatorname{Var}(\hat{p})=\mathbb{V} \operatorname{ar}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{p(1-p)}{n}
$$

is seen to attain the CRLB. We conclude that $\hat{p}=\bar{X}$ is an UMVUE of p.

Exercise 22

(a) For the numerator of the CRLB, we find $\tau(\mu)=\mu$ and $\tau^{\prime}(\mu)=1$. The next intermediate steps can be used to evaluated the expectation in the denominator:

$$
\begin{aligned}
f(x ; \mu) & =\frac{1}{\sqrt{2 \pi} 3} e^{-\frac{(x-\mu)^{2}}{18}} \\
\ln f(x ; \mu) & =-\ln (\sqrt{2 \pi} 3)-\frac{(x-\mu)^{2}}{18} \\
\frac{\partial}{\partial \mu} \ln f(x ; \mu) & =\frac{x-\mu}{9} \\
\mathbb{E}\left(\frac{\partial}{\partial \mu} \ln f(X ; \mu)\right)^{2} & =\mathbb{E}\left(\frac{X-\mu}{9}\right)^{2}=\frac{\mathbb{E}(X-\mu)^{2}}{81}=\frac{\operatorname{Var}(X)}{81}=\frac{1}{9}
\end{aligned}
$$

The CRLB is now obtained as

$$
\frac{\left[\tau^{\prime}(\mu)\right]^{2}}{n \mathbb{E}\left(\frac{\partial}{\partial \mu} \ln f(X ; \mu)\right)^{2}}=\frac{1}{\frac{n}{9}}=\frac{9}{n}
$$

(b) The expectation and variance of $\hat{\mu}$ are

$$
\begin{aligned}
\mathbb{E}(\hat{\mu}) & =\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)=\mu \\
\mathbb{V} \operatorname{ar}(\hat{\mu}) & =\mathbb{V} \operatorname{ar}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{V} \operatorname{ar}\left(X_{i}\right)=\frac{9}{n} .
\end{aligned}
$$

The final expression for the expectation shows that $\hat{\mu}$ is an unbiased estimator for μ. Since the variance of $\hat{\mu}$ also attains the CRLB, we can conclude that $\hat{\mu}$ is an UMVUE for μ.
(c) The 95% percentile of $X \sim \mathrm{~N}(\mu, 9)$ can be written as $\tau(\mu)=\mu+3 z_{0.95}$, since $Z=$ $\frac{X-\mu}{3} \sim \mathrm{~N}(0,1)$ (remember that $z_{0.95}$ denotes the 95% percentile of the standard normal distribution). By the invariance property $\tau(\hat{\mu})=\bar{X}+3 z_{0.95}$ is the MLE of $\tau(\mu)$. In addition, $\tau^{\prime}(\mu)=1$ implies that the CRLB remains $\frac{9}{n}$. Since

$$
\mathbb{E}(\tau(\hat{\mu}))=3 z_{0.95}+\mathbb{E}(\bar{X})=3 z_{0.95}+\mu=\tau(\mu)
$$

and

$$
\operatorname{Var}(\tau(\hat{\mu}))=\operatorname{Var}(\bar{X})=\frac{9}{n}
$$

it follows that $\tau(\hat{\mu})=3 z_{0.95}+\bar{X}$ is an UMVUE of $\tau(\mu)$.

Exercise 23

(a) We first have to derive the MLE for θ. We proceed with the usual steps. The likelihood function is $L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=(2 \pi \theta)^{-n / 2} \exp \left(-\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \theta}\right)$ and therefore

$$
\ln L(\theta)=-\frac{n}{2} \ln (2 \pi)-\frac{n}{2} \ln (\theta)-\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \theta}
$$

We subsequently compute the first two derivatives as

$$
\begin{aligned}
\frac{d}{d \theta} \ln L(\theta) & =-\frac{n}{2 \theta}+\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \theta^{2}} \\
\frac{d^{2}}{d \theta^{2}} \ln L(\theta) & =\frac{n}{2 \theta^{2}}-\frac{\sum_{i=1}^{n} x_{i}^{2}}{\theta^{3}} .
\end{aligned}
$$

If we equate the first derivate to zero and solve for the estimator, then we find $\hat{\theta}=$ $\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}$. The second order condition is fulfilled because

$$
\left.\frac{d^{2}}{d \theta^{2}} \ln L(\theta)\right|_{\theta=\hat{\theta}}=\frac{n}{2 \hat{\theta}^{2}}-\frac{n \hat{\theta}}{\hat{\theta}^{3}}=-\frac{n}{2 \hat{\theta}^{2}}<0
$$

The MLE for θ is thus $\hat{\theta}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$. From

$$
\mathbb{E}(\hat{\theta})=\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)=\frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\theta,
$$

we see that this estimator is unbiased for θ.
(b) Starting from $f(X ; \theta)=\frac{1}{\sqrt{2 \pi \theta}} \exp \left(-\frac{x^{2}}{2 \theta}\right)$, we find

$$
\ln f(X ; \theta)=-\frac{1}{2} \ln (2 \pi)-\frac{1}{2} \ln (\theta)-\frac{X^{2}}{2 \theta}
$$

and by steps similar to those in part (a), the second derivatie w.r.t. θ becomes

$$
\frac{\partial^{2}}{\partial \theta^{2}} \ln f(X ; \theta)=\frac{1}{2 \theta^{2}}-\frac{X^{2}}{\theta^{3}}
$$

Note that $X / \sqrt{\theta} \sim \mathrm{N}(0,1)$, and thus $\frac{X^{2}}{\theta} \sim \chi^{2}(1)$. Using the latter result, we have $-\mathbb{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f(X ; \theta)\right]=\frac{1}{\theta^{2}} \mathbb{E}\left(\frac{X^{2}}{\theta}\right)-\frac{1}{2 \theta^{2}}=\frac{1}{2 \theta^{2}}$ and a CRLB evaluating to

$$
\left(-n \mathbb{E}\left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f(X ; \theta)\right]\right)^{-1}=\frac{2 \theta^{2}}{n}
$$

The variance of $\hat{\theta}$ is

$$
\operatorname{Var}(\hat{\theta})=\mathbb{V} a r\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right)=\operatorname{Var}\left(\frac{\theta}{n} \sum_{i=1}^{n}\left(\frac{X_{i}}{\sqrt{\theta}}\right)^{2}\right)=\frac{\theta^{2}}{n^{2}} \operatorname{Var}\left(Y_{n}\right)=\frac{\theta^{2}}{n^{2}}(2 n)=\frac{2 \theta^{2}}{n}
$$

where we made use of the random variable $Y_{n}=\frac{1}{\theta} \sum_{i=1}^{n} X_{i}^{2}=\sum_{i=1}^{n}\left(\frac{X_{i}}{\sqrt{\theta}}\right)^{2}$. Since $X_{i} / \sqrt{\theta} \sim \mathrm{N}(0,1)$, we know that this Y_{n} is the sum of squared (and independent) standard normal random variables. Therefore, $Y_{n} \sim \chi^{2}(n)$ and $\operatorname{Var}\left(Y_{n}\right)=2 n$. The estimator $\hat{\theta}$ is thus unbiased (see (a)) and its variance attains the CRLB. We conclude that $\hat{\theta}$ is an UMVUE for θ.

Exercise 26

(a) The likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\frac{1}{\theta^{n}}, \quad 0<x_{1: n}=\min _{1 \leq i \leq n} x_{i}, \quad x_{n: n}=\max _{1 \leq i \leq n} x_{i} \leq \theta
$$

$L(\theta)$ is strictly decreasing in θ, so $L(\theta)$ is maximal if θ is minimal. However, the restriction $x_{n: n} \leq \theta$ implies that we should not decrease θ below the value $x_{n: n}$ (otherwise the likelihood would become zero). It follows that $\hat{\theta}=X_{n: n}$.
(b) The given pdf corresponds to the $\operatorname{UNIF}(0, \theta)$ distribution. If the random variable X his this particular uniform distribution, then $\mathbb{E}(X)=\theta / 2$. The estimator follows from:

$$
\bar{X}=\frac{\tilde{\theta}}{2} \quad \Rightarrow \quad \tilde{\theta}=2 \bar{X}
$$

(c) The CDF related to the $\operatorname{UNIF}(0, \theta)$ distribution is

$$
F(x ; \theta)= \begin{cases}0 & x \leq 0 \\ \frac{x}{\theta} & 0<x \leq \theta \\ 1 & x>\theta\end{cases}
$$

The pdf of the order statistic $X_{n: n}$, cf. Theorem 6.5.2 (page 217 of B\&E), is thus equal to

$$
g_{n}(x)=n(F(x))^{n-1} f(x)=\frac{n}{\theta^{n}} x^{n-1}, \quad 0<x \leq \theta
$$

(and zero elsewhere). We can now find $\mathbb{E}\left(X_{n: n}\right)$ by integration,

$$
\mathbb{E}(\hat{\theta})=\mathbb{E}\left(X_{n: n}\right)=\int_{0}^{\theta} \frac{n}{\theta^{n}} x^{n} d x=\left.\frac{n}{\theta^{n}} \frac{x^{n+1}}{n+1}\right|_{0} ^{\theta}=\frac{n}{n+1} \theta \neq \theta,
$$

which reveals that the MLE $\hat{\theta}$ is biased.
(d) Use $\mathbb{E}(X)=\frac{\theta}{2}$ and linearity of the expectation operator to find

$$
\mathbb{E}(\tilde{\theta})=\mathbb{E}(2 \bar{X})=\mathbb{E}\left(\frac{2}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{2}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\theta
$$

We now see that MME $\tilde{\theta}$ is unbiased.
(e) Let us start with the $\operatorname{MLE} \hat{\theta}$. We have $\operatorname{MSE}(\hat{\theta})=\mathbb{E}\left(X_{n: n}-\theta\right)^{2}=\mathbb{E}\left(X_{n: n}^{2}\right)-2 \theta \mathbb{E}\left(X_{n: n}\right)+\theta^{2}$. We have computed $\mathbb{E}\left(X_{n: n}\right)$ in part (c), so it remains to compute the second moment of the estimator. The calculation shows

$$
\mathbb{E}\left(X_{n: n}^{2}\right)=\int_{0}^{\theta} \frac{n}{\theta^{n}} x^{n+1} d x=\left.\frac{n}{\theta^{n}} \frac{x^{n+2}}{n+2}\right|_{0} ^{\theta}=\frac{n}{n+2} \theta^{2}
$$

We can now evaluate the expression from before. We find

$$
\operatorname{MSE}(\hat{\theta})=\frac{n}{n+2} \theta^{2}-2 \frac{n}{n+1} \theta^{2}+\theta^{2}=\frac{2 \theta^{2}}{(n+1)(n+2)}
$$

We continue with the method of moments estimator $\tilde{\theta}$. This estimator was unbiased such that $\operatorname{MSE}(\tilde{\theta})=\mathbb{V a r}(\tilde{\theta})$. Since $\operatorname{Var}(X)=\frac{\theta^{2}}{12}$, we can easily compute this variance by exploiting the standard properties of variances, namely

$$
\operatorname{MSE}(\tilde{\theta})=\mathbb{V} \operatorname{ar}(\tilde{\theta})=\mathbb{V} \operatorname{ar}(2 \bar{X})=\mathbb{V} \operatorname{ar}\left(\frac{2}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{4}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{\theta^{2}}{3 n}
$$

The MSE of both estimator scales linearly with θ^{2} (which is expected because this is the scale parameter). More interesting is the behavior as a function of n. The MLE will have a smaller (or equal) MSE, that is $\operatorname{MSE}(\hat{\theta}) \leq \operatorname{MSE}(\tilde{\theta})$, when

$$
\frac{2 \theta^{2}}{(n+1)(n+2)} \leq \frac{\theta^{2}}{3 n} \quad \Rightarrow \quad n^{2}-3 n+2=(n-1)(n-2) \geq 0
$$

The parabolic function $f(x)=(x-1)(x-2)$ intersect the x-axis in the points $x=1$ and $x=2$. We therefore conclude that the MLE for θ has an MSE that is never higher than the MSE of the MME (for any sample size $n=1,2, \ldots$).

Exercise 31

The MSEs for $\hat{\theta}$ and $\tilde{\theta}$ were computed in Exercise 26. According to Definition 9.4.2 (page 312 in $\mathrm{B} \& \mathrm{E}$) we only have to take the limit $n \rightarrow \infty$.
(a) $\lim _{n \rightarrow \infty} \operatorname{MSE}\left(\hat{\theta}_{n}\right)=\lim _{n \rightarrow \infty} \frac{2 \theta^{2}}{(n+1)(n+2)}=0$, hence $\hat{\theta}_{n}=X_{n: n}$ is MSE consistent for θ.
(b) $\lim _{n \rightarrow \infty} \operatorname{MSE}\left(\tilde{\theta}_{n}\right)=\lim _{n \rightarrow \infty} \frac{\theta^{2}}{3 n}=0$, hence $\tilde{\theta}_{n}=2 \bar{X}_{n}$ is MSE consistent for θ.

Exercise 32

In Exercise 5 we have seen that $\hat{\theta}_{n}=X_{1: n}$. From $\int_{\theta}^{x} 2 \theta^{2} t^{-3} d t=-\left.\theta^{2} t^{-2}\right|_{\theta} ^{x}=1-\theta^{2} x^{-2}$, we find the following CDF for $\hat{\theta}$:

$$
F(x ; \theta)= \begin{cases}0 & x \leq \theta \\ 1-\theta^{2} x^{-2} & \theta<x\end{cases}
$$

The related pdf for the estimator $\hat{\theta}$ is ${ }^{1}$

$$
g_{1}(x)=n(1-F(x))^{n-1} f(x)=2 n \theta^{2 n} x^{-2 n-1} \quad \theta \leq x,
$$

and zero otherwise. We can now compute the probability stated in Definition 9.4.1 (page 311 in B\&E) explicitly:

$$
\begin{aligned}
\mathbb{P}\left(\left|\hat{\theta}_{n}-\theta\right|<\varepsilon\right) & =\mathbb{P}\left(X_{1: n}-\theta<\varepsilon\right)=\mathbb{P}\left(X_{1: n}<\theta+\varepsilon\right)=\int_{\theta}^{\theta+\varepsilon} 2 n \theta^{2 n} x^{-2 n-1} d x \\
& =-\left.\theta^{2 n} x^{-2 n}\right|_{\theta} ^{\theta+\varepsilon}=1-\theta^{2 n}(\theta+\varepsilon)^{-2 n}=1-\left(\frac{\theta}{\theta+\varepsilon}\right)^{2 n}
\end{aligned}
$$

Since $0<\left(\frac{\theta}{\theta+\varepsilon}\right)<1$ for any $\epsilon>0$, we obtain $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\hat{\theta}_{n}-\theta\right|<\varepsilon\right)=1$ thereby showing that the MLE $\hat{\theta}_{n}=X_{1: n}$ is (simply) consistent for θ.

[^0]
Exercise 33

(a) If $X \sim \operatorname{POI}(\mu)$, then $\mathbb{E}(X)=\operatorname{Var}(X)=\mu$ (see Table B.2). For the numerator of the CRLB, $\tau(\mu)=\mu$ yields $\tau^{\prime}(\mu)=1$. The following calculations can be used to evaluated the expectation in the denominator:

$$
\begin{aligned}
f(x ; \mu) & =\frac{e^{-\mu} \mu^{x}}{x!} \\
\ln f(x ; \mu) & =-\mu+x \ln \mu-\ln (x!) \\
\frac{\partial}{\partial \mu} \ln f(x ; \mu) & =-1+\frac{x}{\mu}=\frac{x-\mu}{\mu} \\
\mathbb{E}\left(\frac{\partial}{\partial \mu} \ln f(X ; p)\right)^{2} & =\mathbb{E}\left(\frac{x-\mu}{\mu}\right)^{2}=\frac{\mathbb{E}(X-\mu)^{2}}{\mu^{2}}=\frac{\operatorname{Var}(X)}{\mu^{2}}=\frac{1}{\mu} .
\end{aligned}
$$

The CRLB is thus equal to

$$
\frac{\left[\tau^{\prime}(\mu)\right]^{2}}{n \mathbb{E}\left(\frac{\partial}{\partial \mu} \ln f(X ; \mu)\right)^{2}}=\frac{1}{\frac{n}{\mu}}=\frac{\mu}{n}
$$

(b) The denominator of the CRLB remains unchanged. But now $\theta=\tau(\mu)=e^{-\mu}$, hence $\tau^{\prime}(\mu)=-e^{-\mu}$. The new CRLB is thus

$$
\frac{\left[\tau^{\prime}(\mu)\right]^{2}}{n \mathbb{E}\left(\frac{\partial}{\partial \mu} \ln f(X ; \mu)\right)^{2}}=\frac{\left(-e^{-\mu}\right)^{2}}{\frac{n}{\mu}}=\frac{\mu e^{-2 \mu}}{n}
$$

(c) The CRLB for μ has the form $\operatorname{Var}(X) / n$. The sample mean is therefore a promising candidate for an UMVUE. We compute mean and variance of our candidate estimator $\hat{\mu}=\bar{X}$ and find

$$
\begin{aligned}
\mathbb{E}(\hat{\mu}) & =\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\mu \\
\mathbb{V} \operatorname{ar}(\hat{\mu}) & =\mathbb{V} \operatorname{ar}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{V} \operatorname{ar}\left(X_{i}\right)=\frac{\mu}{n}
\end{aligned}
$$

From $\mathbb{E}(\hat{\mu})$ we see that $\hat{\mu}$ is an unbiased estimator for μ and its variance attains the CRLB. We conclude that $\hat{\mu}=\bar{X}$ is an UMVUE for μ.
(d) We use the invariance property for the transformation $\theta=\tau(\mu)=e^{-\mu}$. The MLE for θ is thus $\hat{\theta}=\tau(\hat{\mu})=e^{-\bar{X}}$.
(e) Let us define the new random variable $Y_{n}=\sum_{i=1}^{n} X_{i}$. It can by shown (using for instance the properties of moment generating functions) that $Y_{n} \sim \operatorname{POI}(n \mu)$. We have

$$
\mathbb{E}(\hat{\theta})=\mathbb{E}\left(e^{-\bar{X}}\right)=\mathbb{E}\left(e^{-\frac{1}{n} Y_{n}}\right)=M_{Y_{n}}\left(-\frac{1}{n}\right)=e^{n \mu\left(e^{-\frac{1}{n}}-1\right)}=\theta^{n\left(1-e^{-\frac{1}{n}}\right)} \neq \theta
$$

thereby showing that $\hat{\theta}$ is not an unbiased estimator for θ.
(f) $\hat{\theta}$ is asymptotically unbiased for θ if $\lim _{n \rightarrow \infty} \mathbb{E}(\hat{\theta})=\theta$. The latter expectation was already calculated in the previous part so it remains to take the limit. Using the rules of limits, we have

$$
\lim _{n \rightarrow \infty} \mathbb{E}(\hat{\theta})=\lim _{n \rightarrow \infty} \theta^{n\left(1-e^{-\frac{1}{n}}\right)}=\theta^{\lim _{n \rightarrow \infty} n\left(1-e^{-\frac{1}{n}}\right)}
$$

The limit in the exponent can be written as $\lim _{n \rightarrow \infty} \frac{1-e^{-1 / n}}{1 / n}$ which at first sight gives the indeterminate form $\frac{0}{0}$. As a possible solution one may realize that $1 / n$ becomes small as $n \rightarrow \infty$ which motivates the use of a Taylor series for the exponential (that is $\exp (x)=$ $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$). This results in

$$
\begin{aligned}
n\left[1-e^{-\frac{1}{n}}\right] & =n\left[1-\left(1-\frac{1}{n}+\frac{1}{2 n^{2}}-\frac{1}{3!n^{3}}+\frac{1}{4!n^{4}}-\ldots\right)\right] \\
& =1-\frac{1}{2 n}+\frac{1}{3!n^{2}}-\frac{1}{4!n^{3}}+\cdots \rightarrow 1 \text { for } n \rightarrow \infty
\end{aligned}
$$

and hence $\lim _{n \rightarrow \infty} \mathbb{E}(\hat{\theta})=\lim _{n \rightarrow \infty} \theta^{n}\left(1-e^{-\frac{1}{n}}\right)=\theta . \hat{\theta}$ is asymptotically unbiased for θ.
(g) Using the previously defined Y_{n}, we have $\tilde{\theta}=\left(\frac{n-1}{n}\right)^{\sum_{i=1}^{n} X_{i}}=\left(\frac{n-1}{n}\right)^{Y_{n}}$. Then

$$
\begin{aligned}
\mathbb{E}(\tilde{\theta}) & =\mathbb{E}\left(\left(\frac{n-1}{n}\right)^{Y_{n}}\right)=\mathbb{E}\left(e^{Y_{n} \log \left(\frac{n-1}{n}\right)}\right)=M_{Y_{n}}\left(\log \left(\frac{n-1}{n}\right)\right)=e^{n \mu\left(e^{\log \left(\frac{n-1}{n}\right)}-1\right)} \\
& =e^{n \mu\left(\frac{n-1}{n}-1\right)}=e^{-\mu}=\theta,
\end{aligned}
$$

and we see that $\tilde{\theta}$ is indeed unbiased for θ.
(h) We will use $\operatorname{Var}(\tilde{\theta})=\mathbb{E}\left(\tilde{\theta}^{2}\right)-[\mathbb{E}(\tilde{\theta})]^{2}$ for which we only need to compute $\mathbb{E}\left(\tilde{\theta}^{2}\right)$. We have

$$
\begin{aligned}
\mathbb{E}\left(\tilde{\theta}^{2}\right) & =\mathbb{E}\left(\left[\left(\frac{n-1}{n}\right)^{Y_{n}}\right]^{2}\right)=\mathbb{E}\left(e^{2 \log \left(\frac{n-1}{n}\right) Y_{n}}\right)=M_{Y_{n}}\left(2 \log \left(\frac{n-1}{n}\right)\right) \\
& =e^{n \mu\left(e^{2 \log \left(\frac{n-1}{n}\right)}-1\right)}=e^{n \mu\left(\left(\frac{n-1}{n}\right)^{2}-1\right)}=e^{-\mu\left(2-\frac{1}{n}\right)},
\end{aligned}
$$

and find

$$
\operatorname{Var}(\tilde{\theta})=\mathbb{E}\left(\tilde{\theta}^{2}\right)-[\mathbb{E}(\tilde{\theta})]^{2}=e^{-\mu\left(2-\frac{1}{n}\right)}-\left[e^{-\mu}\right]^{2}=e^{-2 \mu+\frac{\mu}{n}}-e^{-2 \mu}=e^{-2 \mu}\left(e^{\frac{\mu}{n}}-1\right) .
$$

We should compare this expression to the CRLB which was found in part (b), that is $\frac{\mu e^{-2 \mu}}{n}$. Another application of the Taylor series for the exponential results in

$$
\begin{aligned}
\operatorname{Var}(\tilde{\theta}) & =e^{-2 \mu}\left(e^{\frac{\mu}{n}}-1\right)=e^{-2 \mu}\left(\left(1+\frac{\mu}{n}+\frac{\mu^{2}}{2 n^{2}}+\frac{\mu^{3}}{3!n^{3}}+\ldots\right)-1\right) \\
& =\frac{\mu e^{-2 \mu}}{n}\left(1+\frac{\mu}{2 n}+\frac{\mu^{2}}{3!n^{2}}+\ldots\right) .
\end{aligned}
$$

Note that the higher order terms like $\frac{\mu}{2 n}, \frac{\mu^{2}}{3!n^{2}}$ et cetera will all positive be positive. The variance of $\tilde{\theta}$ is thus greater than the CRLB.

Exercise 34

(a) The likelihood and log-likelihood are $L(p)=\prod_{i=1}^{n} p(1-p)^{x_{i}}=p^{n}(1-p)^{n \bar{x}}$ and

$$
\ln L(p)=n \ln (p)+n \bar{x} \ln (1-p)
$$

respectively. The first and second derivative of this log-likelihood with respect to the parameter p are

$$
\begin{aligned}
\frac{d}{d p} \ln L(p) & =\frac{n}{p}-\frac{n \bar{x}}{1-p}=\frac{n-n p(1+\bar{x})}{p(1-p)} \\
\frac{d^{2}}{d p^{2}} \ln L(p) & =-\frac{n}{p^{2}}-\frac{n \bar{x}}{(1-p)^{2}}
\end{aligned}
$$

Equating the first derivative to zero yields the candidate solution $\hat{p}=\frac{1}{1+\bar{x}}$. The following calculation shows that this indeed gives a maximum

$$
\left.\frac{d^{2}}{d p^{2}} \ln L(p)\right|_{p=\hat{p}}=-n(1+\bar{x})^{2}-\frac{n(1+\bar{x})^{2}}{\bar{x}}
$$

where we used $1-\hat{p}=\frac{\bar{x}}{1+\bar{x}}$ and rule out the case where $\bar{x}=0$ (this can happen with finite probability yet will not give us information regarding p). We conclude that the MLE for p is $\hat{p}=\frac{1}{1+X}$.
(b) Apply the invariance property to $\theta=\tau(p)=\frac{1-p}{p}$. The MLE is obtained as

$$
\hat{\theta}=\tau(\hat{p})=\frac{1-\frac{1}{1+X}}{\frac{1}{1+\bar{X}}}=\bar{X}
$$

(c) If X has pdf $f(x ; p)=p(1-p)^{x}$ for $x=0,1, \ldots$, then $Y=1+X$ has the $\operatorname{GEO}(p)$ distribution. By linearity of the expectation we get $\mathbb{E}(X)=\mathbb{E}(Y)-1=\frac{1}{p}-1$ (see Table B.2). This expectation will be needed later on. For the numerator of the CRLB, $\tau(p)=\frac{1-p}{p}$ yields $\tau^{\prime}(p)=-\frac{1}{p^{2}}$. The following calculations can be used to evaluated the expectation in the denominator of the CRLB:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial p^{2}} \ln f(x ; p) & =-\frac{1}{p^{2}}-\frac{x}{(1-p)^{2}} \\
\mathbb{E}\left(\frac{\partial^{2}}{\partial p^{2}} \ln f(X ; p)\right) & =-\frac{1}{p^{2}}-\frac{E(X)}{(1-p)^{2}}=-\frac{1}{p^{2}}-\frac{\frac{1}{p}-1}{(1-p)^{2}}=-\frac{1}{p^{2}(1-p)}
\end{aligned}
$$

The CRLB equals

$$
\frac{\left[\tau^{\prime}(p)\right]^{2}}{-n \mathbb{E}\left(\frac{\partial^{2}}{\partial p^{2}} \ln f(X ; p)\right)}=\frac{\frac{1}{p^{4}}}{\frac{n}{p^{2}(1-p)}}=\frac{1-p}{n p^{2}}
$$

(d) We compute the mean and variance of $\hat{\theta}$. The expectation is $\mathbb{E}(\hat{\theta})=\mathbb{E}(\bar{X})=\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=$ $\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\frac{1-p}{p}=\theta$. Because X is shifted version of Y, we have $\operatorname{Var}(X)=\mathbb{V a r}(Y)=$ $\frac{1-p}{p^{2}}$. The variance of $\hat{\theta}$ is therefore

$$
\mathbb{V} \operatorname{ar}(\hat{\theta})=\mathbb{V} \operatorname{ar}(\bar{X})=\mathbb{V} \text { ar }\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{1-p}{n p^{2}}
$$

The estimator $\hat{\theta}$ is unbiased for θ and attains the CRLB. We conclude that $\hat{\theta}=\bar{X}$ is an UMVUE for θ.
(e) $\lim _{n \rightarrow \infty} \operatorname{MSE}\left(\hat{\theta}_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Var}\left(\hat{\theta}_{n}\right)=\lim _{n \rightarrow \infty} \frac{1-p}{n p^{2}}=0$ which shows that the MLE $\hat{\theta}_{n}=$ \bar{X}_{n} of θ is MSE consistent for θ.
(f) Under regularity conditions we know that the asymptotic distribution of MLEs is normal with mean θ and the variance being equal to the CRLB (see page 316 of B\&E). Thus, for large n, approximately

$$
\hat{\theta} \sim \mathrm{N}\left(\theta, \frac{1-p}{n p^{2}}\right) .
$$

It is mathematically neater to write $\sqrt{n}(\hat{\theta}-\theta) \xrightarrow{d} \mathrm{~N}\left(0, \frac{1-p}{p^{2}}\right)$.

[^0]: ${ }^{1}$ The CDF for $X_{1: n}$ is $\mathbb{P}\left(X_{1: n} \leq x\right)=1-\mathbb{P}\left(X_{1: n}>x\right)=1-\mathbb{P}\left(X_{1}>x, X_{2}>x, \ldots, X_{n}>x\right)=1-\prod_{i=1}^{n} \mathbb{P}\left(X_{i}>\right.$ $x)=1-[1-F(x)]^{n}$. By differentiation w.r.t. x we find $g_{1}(x)=n(1-F(x))^{n-1} f(x)$.

